Skip to content

fragdock

compute_ij_type_lookup

compute_ij_type_lookup(indices1: ndarray | Iterable, indices2: ndarray | Iterable) -> ndarray

Compute a lookup table where the array elements are indexed to boolean values if the indices match. Axis 0 is indices1, Axis 1 is indices2

Parameters:

  • indices1 (ndarray | Iterable) –

    The array elements from group 1

  • indices2 (ndarray | Iterable) –

    The array elements from group 2

Returns:

  • ndarray

    A 2D boolean array where the first index maps to the input 1, second index maps to index 2

Source code in symdesign/protocols/fragdock.py
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def compute_ij_type_lookup(indices1: np.ndarray | Iterable, indices2: np.ndarray | Iterable) -> np.ndarray:
    """Compute a lookup table where the array elements are indexed to boolean values if the indices match.
    Axis 0 is indices1, Axis 1 is indices2

    Args:
        indices1: The array elements from group 1
        indices2: The array elements from group 2

    Returns:
        A 2D boolean array where the first index maps to the input 1, second index maps to index 2
    """
    # TODO use broadcasting to compute true/false instead of tiling (memory saving)
    indices1_repeated = np.repeat(indices1, len(indices2))
    len_indices1 = len(indices1)
    indices2_tiled = np.tile(indices2, len_indices1)
    # TODO keep as table or flatten? Can use one or the other as memory and take a view of the other as needed...
    # return np.where(indices1_repeated == indices2_tiled, True, False).reshape(len_indices1, -1)
    return (indices1_repeated == indices2_tiled).reshape(len_indices1, -1)

get_perturb_matrices

get_perturb_matrices(rotation_degrees: float, number: int = 10) -> ndarray

Using a sampled degree of rotation, create z-axis rotation matrices in equal increments between +/- rotation_degrees/2

Parameters:

  • rotation_degrees (float) –

    The range of degrees to create matrices for. Will be centered at the identity perturbation

  • number (int, default: 10 ) –

    The number of steps to take

Returns:

  • ndarray

    A 3D numpy array where each subsequent rotation is along axis=0, and each 3x3 rotation matrix is along axis=1/2

Source code in symdesign/protocols/fragdock.py
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def get_perturb_matrices(rotation_degrees: float, number: int = 10) -> np.ndarray:
    """Using a sampled degree of rotation, create z-axis rotation matrices in equal increments between +/- rotation_degrees/2

    Args:
        rotation_degrees: The range of degrees to create matrices for. Will be centered at the identity perturbation
        number: The number of steps to take

    Returns:
        A 3D numpy array where each subsequent rotation is along axis=0,
            and each 3x3 rotation matrix is along axis=1/2
    """
    half_grid_range, remainder = divmod(number, 2)
    # If the number is odd we should center on 0 else center with more on the negative side
    if remainder:
        upper_range = half_grid_range + 1
    else:
        upper_range = half_grid_range

    step_degrees = rotation_degrees / number
    perturb_matrices = []
    for step in range(-half_grid_range, upper_range):  # Range from -5 to 4(5) for example. 0 is identity matrix
        rad = math.radians(step * step_degrees)
        rad_s = math.sin(rad)
        rad_c = math.cos(rad)
        # Perform rotational perturbation on z-axis
        perturb_matrices.append([[rad_c, -rad_s, 0.], [rad_s, rad_c, 0.], [0., 0., 1.]])

    return np.array(perturb_matrices)

create_perturbation_transformations

create_perturbation_transformations(sym_entry: SymEntry, number_of_rotations: int = 1, number_of_translations: int = 1, rotation_steps: Iterable[float] = None, translation_steps: Iterable[float] = None) -> dict[str, ndarray]

From a specified SymEntry and sampling schedule, create perturbations to degrees of freedom for each available

Parameters:

  • sym_entry (SymEntry) –

    The SymEntry whose degrees of freedom should be expanded

  • number_of_rotations (int, default: 1 ) –

    The number of times to sample from the allowed rotation space. 1 means no perturbation

  • number_of_translations (int, default: 1 ) –

    The number of times to sample from the allowed translation space. 1 means no perturbation

  • rotation_steps (Iterable[float], default: None ) –

    The step to sample rotations +/- the identified rotation in degrees. Expected type is an iterable of length comparable to the number of rotational degrees of freedom

  • translation_steps (Iterable[float], default: None ) –

    The step to sample translations +/- the identified translation in Angstroms Expected type is an iterable of length comparable to the number of translational degrees of freedom

Returns:

  • dict[str, ndarray]

    A mapping between the perturbation type and the corresponding transformation operation

Source code in symdesign/protocols/fragdock.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
def create_perturbation_transformations(sym_entry: SymEntry, number_of_rotations: int = 1, number_of_translations: int = 1,
                                        rotation_steps: Iterable[float] = None,
                                        translation_steps: Iterable[float] = None) -> dict[str, np.ndarray]:
    """From a specified SymEntry and sampling schedule, create perturbations to degrees of freedom for each available

    Args:
        sym_entry: The SymEntry whose degrees of freedom should be expanded
        number_of_rotations: The number of times to sample from the allowed rotation space. 1 means no perturbation
        number_of_translations: The number of times to sample from the allowed translation space. 1 means no perturbation
        rotation_steps: The step to sample rotations +/- the identified rotation in degrees.
            Expected type is an iterable of length comparable to the number of rotational degrees of freedom
        translation_steps: The step to sample translations +/- the identified translation in Angstroms
            Expected type is an iterable of length comparable to the number of translational degrees of freedom

    Returns:
        A mapping between the perturbation type and the corresponding transformation operation
    """
    # Get the perturbation parameters
    # Total number of perturbations desired using the total_dof possible in the symmetry and those requested
    target_dof = total_dof = sym_entry.total_dof
    rotational_dof = sym_entry.number_dof_rotation
    translational_dof = sym_entry.number_dof_translation
    n_dof_external = sym_entry.number_dof_external

    if number_of_rotations < 1:
        logger.warning(f"Can't create perturbation transformations with rotation_number of {number_of_rotations}. "
                       f"Setting to 1")
        number_of_rotations = 1
        # raise ValueError(f"Can't create perturbation transformations with rotation_number of {rotation_number}")
    if number_of_rotations == 1:
        target_dof -= rotational_dof
        rotational_dof = 0

    if number_of_translations < 1:
        logger.warning(f"Can't create perturbation transformations with translation_number of {number_of_translations}. "
                       f"Setting to 1")
        number_of_translations = 1

    if number_of_translations == 1:
        target_dof -= translational_dof
        translational_dof = 0
        # Set to 0 so there is no deviation from the current value and remove any provided values
        default_translation = 0
        translation_steps = None
    else:
        # Default translation range is 0.5 Angstroms
        default_translation = .5

    if translation_steps is None:
        translation_steps = tuple(repeat(default_translation, sym_entry.number_of_groups))

    if n_dof_external:
        if translation_steps is None:
            logger.warning(f'Using the default value of {default_translation} for external translation steps')
            ext_translation_steps = tuple(repeat(default_translation, n_dof_external))
        else:
            # Todo allow ext_translation_steps to be a parameter
            ext_translation_steps = translation_steps
    # # Make a vector of the perturbation number [1, 2, 2, 3, 3, 1] with 1 as constants on each end
    # dof_number_perturbations = [1] \
    #     + [rotation_number for dof in range(rotational_dof)] \
    # Make a vector of the perturbation number [2, 2, 3, 3]
    dof_number_perturbations = \
        [number_of_rotations for dof in range(rotational_dof)] \
        + [number_of_translations for dof in range(translational_dof)] \
        # + [1]
    # translation_stack_size = translation_number**translational_dof
    # stack_size = rotation_number**rotational_dof * translation_stack_size
    # number = rotation_number + translation_number

    stack_size = prod(dof_number_perturbations)
    # Initialize a translation grid for any translational degrees of freedom
    translation_grid = np.zeros((stack_size, 3), dtype=float)
    # # Begin with total dof minus 1
    # remaining_dof = total_dof - 1
    # # Begin with 0
    # seen_dof = 0

    if rotation_steps is None:
        # Default rotation range is 1. degree
        default_rotation = 1.
        rotation_steps = tuple(repeat(default_rotation, sym_entry.number_of_groups))

    dof_idx = 0
    perturbation_mapping = {}
    for idx, group in enumerate(sym_entry.groups):
        group_idx = idx + 1
        if getattr(sym_entry, f'is_internal_rot{group_idx}'):
            rotation_step = rotation_steps[idx]  # * 2
            perturb_matrices = get_perturb_matrices(rotation_step, number=number_of_rotations)
            # Repeat (tile then reshape) the matrices according to the number of perturbations raised to the power of
            # the remaining dof (remaining_dof), then tile that by how many dof have been seen (seen_dof)
            # perturb_matrices = \
            #     np.tile(np.tile(perturb_matrices,
            #                     (1, 1, rotation_number**remaining_dof * translation_stack_size)).reshape(-1, 3, 3),
            #             (number**seen_dof, 1, 1))
            # remaining_dof -= 1
            # seen_dof += 1
            # Get the product of the number of perturbations before and after the current index
            repeat_number = prod(dof_number_perturbations[dof_idx + 1:])
            tile_number = prod(dof_number_perturbations[:dof_idx])
            # Repeat (tile then reshape) the matrices according to the product of the remaining dof,
            # number of perturbations, then tile by the product of how many perturbations have been seen
            perturb_matrices = np.tile(np.tile(perturb_matrices, (1, repeat_number, 1)).reshape(-1, 3, 3),
                                       (tile_number, 1, 1))
            # Increment the dof seen
            dof_idx += 1
        else:
            # This is a requirement as currently, all SymEntry are assumed to have rotations
            # np.tile the identity matrix to make equally sized.
            perturb_matrices = np.tile(identity_matrix, (stack_size, 1, 1))

        perturbation_mapping[f'rotation{group_idx}'] = perturb_matrices

    for idx, group in enumerate(sym_entry.groups):
        group_idx = idx + 1
        if getattr(sym_entry, f'is_internal_tx{group_idx}'):
            # Repeat the translation according to the number of perturbations raised to the power of the
            # remaining dof (remaining_dof), then tile that by how many dof have been seen (seen_dof)
            internal_translation_grid = translation_grid.copy()
            translation_perturb_vector = \
                np.linspace(-translation_steps[idx], translation_steps[idx], number_of_translations)
            # internal_translation_grid[:, 2] = np.tile(np.repeat(translation_perturb_vector, number**remaining_dof),
            #                                           number**seen_dof)
            # remaining_dof -= 1
            # seen_dof += 1
            # Get the product of the number of perturbations before and after the current index
            repeat_number = prod(dof_number_perturbations[dof_idx + 1:])
            tile_number = prod(dof_number_perturbations[:dof_idx])
            internal_translation_grid[:, 2] = np.tile(np.repeat(translation_perturb_vector, repeat_number),
                                                      tile_number)
            # Increment the dof seen
            dof_idx += 1
            perturbation_mapping[f'translation{group_idx}'] = internal_translation_grid

    # if n_dof_external:
    #     # sym_entry.number_dof_external are included in the sym_entry.total_dof calculation
    #     # Need to perturb this many dofs. Each additional ext DOF increments e, f, g.
    #     # So 2 number_dof_external gives e, f. 3 gives e, f, g. This way the correct number of axis can be perturbed..
    #     # This solution doesn't vary the translation_grid in all dofs
    #     # ext_dof_perturbs[:, :number_dof_external] = np.tile(translation_grid, (number_dof_external, 1)).T
    # This solution iterates over the translation_grid, adding a new grid over all remaining dofs
    external_translation_grid = translation_grid.copy()
    for idx, ext_idx in enumerate(range(n_dof_external)):
        translation_perturb_vector = \
            np.linspace(-ext_translation_steps[idx], ext_translation_steps[idx], number_of_translations)
        # external_translation_grid[:, ext_idx] = np.tile(np.repeat(translation_perturb_vector,
        #                                                           number**remaining_dof),
        #                                                 number**seen_dof)
        # remaining_dof -= 1
        # seen_dof += 1
        # Get the product of the number of perturbations before and after the current index
        repeat_number = prod(dof_number_perturbations[dof_idx + 1:])
        tile_number = prod(dof_number_perturbations[:dof_idx])
        external_translation_grid[:, ext_idx] = np.tile(np.repeat(translation_perturb_vector, repeat_number),
                                                        tile_number)
        # Increment the dof seen
        dof_idx += 1

    perturbation_mapping['external_translations'] = external_translation_grid

    # if remaining_dof + 1 != 0 and seen_dof != total_dof:
    #     logger.critical(f'The number of perturbations is unstable! {remaining_dof + 1} != 0 and '
    #                     f'{seen_dof} != {total_dof} total_dof')
    if dof_idx != target_dof:
        logger.critical(f'The number of perturbations is unstable! '
                        f'perturbed dof used {dof_idx} != {target_dof}, the targeted dof to perturb resulting from '
                        f'{total_dof} total_dof = {rotational_dof} rotational_dof, {translational_dof} '
                        f'translational_dof, and {n_dof_external} external_translational_dof')

    return perturbation_mapping, target_dof

make_contiguous_ghosts

make_contiguous_ghosts(ghost_frags_by_residue: list[list[GhostFragment]], residues: list[Residue], distance: float = 16.0, initial_z_value: float = 1.0) -> ndarray

Identify GhostFragment overlap originating from a group of residues related bby spatial proximity

Parameters:

  • ghost_frags_by_residue (list[list[GhostFragment]]) –

    The list of GhostFragments separated by Residue instances. GhostFragments should align with residues

  • residues (list[Residue]) –

    Residue instance for which the ghost_frags_by_residue belong to

  • distance (float, default: 16.0 ) –

    The distance to measure neighbors between residues

  • initial_z_value (float, default: 1.0 ) –

    The acceptable standard deviation z score for initial fragment overlap identification. Smaller values lead to more stringent matching criteria

Returns:

  • ndarray

    The indices of the ghost fragments (when the ghost_frags_by_residue) is unstacked such as by itertool.chain

  • ndarray

    chained

Source code in symdesign/protocols/fragdock.py
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def make_contiguous_ghosts(ghost_frags_by_residue: list[list[GhostFragment]], residues: list[Residue],
                           distance: float = 16., initial_z_value: float = 1.) -> np.ndarray:
    #     -> tuple[np.ndarray, np.ndarray, np.ndarray]
    """Identify GhostFragment overlap originating from a group of residues related bby spatial proximity

    Args:
        ghost_frags_by_residue: The list of GhostFragments separated by Residue instances.
            GhostFragments should align with residues
        residues: Residue instance for which the ghost_frags_by_residue belong to
        # Todo residues currently requires a cb_coord to measure Residue-Residue distances. This could be some other feature
        #  of fragments such as a coordinate that identifies its spatial proximity to other fragments
        distance: The distance to measure neighbors between residues
        initial_z_value: The acceptable standard deviation z score for initial fragment overlap identification. \
            Smaller values lead to more stringent matching criteria

    Returns:
        The indices of the ghost fragments (when the ghost_frags_by_residue) is unstacked such as by itertool.chain
        chained
    """
    # Set up the output array with the number of residues by the length of the max number of ghost fragments
    max_ghost_frags = max([len(ghost_frags) for ghost_frags in ghost_frags_by_residue])
    number_or_surface_frags = len(residues)
    same_component_overlapping_ghost_frags = np.zeros((number_or_surface_frags, max_ghost_frags), dtype=int)
    ghost_frag_rmsds_by_residue = np.zeros_like(same_component_overlapping_ghost_frags, dtype=float)
    ghost_guide_coords_by_residue = np.zeros((number_or_surface_frags, max_ghost_frags, 3, 3))
    for idx, residue_ghosts in enumerate(ghost_frags_by_residue):
        number_of_ghosts = len(residue_ghosts)
        # Set any viable index to 1 to distinguish between padding with 0
        same_component_overlapping_ghost_frags[idx, :number_of_ghosts] = 1
        ghost_frag_rmsds_by_residue[idx, :number_of_ghosts] = [ghost.rmsd for ghost in residue_ghosts]
        ghost_guide_coords_by_residue[idx, :number_of_ghosts] = [ghost.guide_coords for ghost in residue_ghosts]
    # ghost_frag_rmsds_by_residue = np.array([[ghost.rmsd for ghost in residue_ghosts]
    #                                         for residue_ghosts in ghost_frags_by_residue], dtype=object)
    # ghost_guide_coords_by_residue = np.array([[ghost.guide_coords for ghost in residue_ghosts]
    #                                           for residue_ghosts in ghost_frags_by_residue], dtype=object)
    # surface_frag_residue_numbers = [residue.number for residue in residues]

    # Query for residue-residue distances for each surface fragment
    # surface_frag_cb_coords = np.concatenate([residue.cb_coords for residue in residues], axis=0)
    surface_frag_cb_coords = np.array([residue.cb_coords for residue in residues])
    model1_surface_cb_ball_tree = BallTree(surface_frag_cb_coords)
    residue_contact_query: np.ndarray = \
        model1_surface_cb_ball_tree.query_radius(surface_frag_cb_coords, distance)
    surface_frag_residue_indices = list(range(number_or_surface_frags))
    contacting_residue_idx_pairs: list[tuple[int, int]] = \
        [(surface_frag_residue_indices[idx1], surface_frag_residue_indices[idx2])
         for idx2, idx1_contacts in enumerate(residue_contact_query.tolist())
         for idx1 in idx1_contacts.tolist()]

    # Separate residue-residue contacts into a unique set of residue pairs
    asymmetric_contacting_residue_pairs, found_pairs = [], []
    for residue_idx1, residue_idx2 in contacting_residue_idx_pairs:
        # Add to unique set (asymmetric_contacting_residue_pairs) if we have never observed either
        if residue_idx1 == residue_idx2:
            continue  # We don't need to add because this check rules possibility out
        elif (residue_idx1, residue_idx2) not in found_pairs:
            # or (residue2, residue1) not in found_pairs
            # Checking both directions isn't required because the overlap would be the same...
            asymmetric_contacting_residue_pairs.append((residue_idx1, residue_idx2))
        # Add both pair orientations (1, 2) or (2, 1) regardless
        found_pairs.extend([(residue_idx1, residue_idx2), (residue_idx2, residue_idx1)])

    # Now, use asymmetric_contacting_residue_pairs indices to find the ghost_fragments that overlap for each residue
    # Todo 3, there are multiple indexing steps for residue_idx1/2 which only occur once if below code was used
    #  found_pairs = []
    #  for residue_idx2 in range(residue_contact_query.size):
    #      residue_ghost_frag_type2 = ghost_frag_type_by_residue[residue_idx2]
    #      residue_ghost_guide_coords2 = ghost_guide_coords_by_residue[residue_idx2]
    #      residue_ghost_reference_rmsds2 = ghost_frag_rmsds_by_residue[residue_idx2]
    #      for residue_idx1 in residue_contact_query[residue_idx2]]
    #          # Check if the pair has been seen before. Work from second visited index(1) to first visited(2)
    #          if (residue_idx1, residue_idx2) in found_pairs:
    #              continue
    #          # else:
    #          found_pairs.append((residue_idx1, residue_idx2))
    #          type_bool_matrix = compute_ij_type_lookup(ghost_frag_type_by_residue[residue_idx1],
    #                                                    residue_ghost_frag_type2)
    #          # Separate indices for each type-matched, ghost fragment in the residue pair
    #          residue_idx1_ghost_indices, residue_idx2_ghost_indices = np.nonzero(type_bool_matrix)
    # Set up the input array types with the various information needed for each pairwise check
    ghost_frag_type_by_residue = [[ghost.frag_type for ghost in residue_ghosts]
                                  for residue_ghosts in ghost_frags_by_residue]
    for residue_idx1, residue_idx2 in asymmetric_contacting_residue_pairs:
        # Check if each of the associated ghost frags have the same secondary structure type
        #   Fragment1
        # F T  F  F
        # R F  F  T
        # A F  F  F
        # G F  F  F
        # 2 T  T  F
        type_bool_matrix = compute_ij_type_lookup(ghost_frag_type_by_residue[residue_idx1],
                                                  ghost_frag_type_by_residue[residue_idx2])
        # Separate indices for each type-matched, ghost fragment in the residue pair
        residue_idx1_ghost_indices, residue_idx2_ghost_indices = np.nonzero(type_bool_matrix)
        # # Iterate over each matrix rox/column to pull out necessary guide coordinate pairs
        # # HERE v
        # # ij_matching_ghost1_indices = (type_bool_matrix * np.arange(len(type_bool_matrix)))[type_bool_matrix]

        # These should pick out each instance of the guide_coords identified as overlapping by indexing bool type
        # Resulting instances should be present multiple times from residue_idxN_ghost_indices
        ghost_coords_residue1 = ghost_guide_coords_by_residue[residue_idx1][residue_idx1_ghost_indices]
        ghost_coords_residue2 = ghost_guide_coords_by_residue[residue_idx2][residue_idx2_ghost_indices]
        if len(ghost_coords_residue1) != len(residue_idx1_ghost_indices):
            raise IndexError('There was an issue indexing')
        ghost_reference_rmsds_residue1 = ghost_frag_rmsds_by_residue[residue_idx1][residue_idx1_ghost_indices]

        # Perform the overlap calculation and find indices with overlap
        overlapping_z_score = rmsd_z_score(ghost_coords_residue1,
                                           ghost_coords_residue2,
                                           ghost_reference_rmsds_residue1)  # , max_z_value=initial_z_value)
        same_component_overlapping_indices = np.flatnonzero(overlapping_z_score <= initial_z_value)
        # Increment indices of overlapping ghost fragments for each residue
        # same_component_overlapping_ghost_frags[
        #     residue_idx1, residue_idx1_ghost_indices[same_component_overlapping_indices]
        # ] += 1
        # This double counts as each is actually overlapping at the same location in space.
        # Just need one for initial overlap check...
        # Todo situation where more info needed?
        same_component_overlapping_ghost_frags[
            residue_idx2, residue_idx2_ghost_indices[same_component_overlapping_indices]
        ] += 1
        #       Ghost Fragments
        # S F - 1  0  0
        # U R - 0  0  0
        # R A - 0  0  0
        # F G - 1  1  0
        # Todo
        #  Could use the identified ghost fragments to further stitch together continuous ghost fragments...
        #  This proceeds by doing guide coord overlap between fragment adjacent CA (i.e. +-2 fragment length 5) and
        #  other identified ghost fragments
        #  Or guide coords cross product points along direction of persistence and euler angles are matched between
        #  all overlap ghosts to identify those which share "moment of extension"

    # Measure where greater than 0 as a value of 1 was included to mark viable fragment indices
    fragment_overlap_counts = \
        same_component_overlapping_ghost_frags[np.nonzero(same_component_overlapping_ghost_frags)]
    # logger.debug(f'fragment_overlap_counts.shape: {fragment_overlap_counts.shape}')
    viable_same_component_overlapping_ghost_frags = np.flatnonzero(fragment_overlap_counts > 1)
    # logger.debug(f'viable_same_component_overlapping_ghost_frags.shape: '
    #              f'{viable_same_component_overlapping_ghost_frags.shape}')
    # logger.debug(f'viable_same_component_overlapping_ghost_frags[:10]: '
    #              f'{viable_same_component_overlapping_ghost_frags[:10]}')
    return viable_same_component_overlapping_ghost_frags

check_tree_for_query_overlap

check_tree_for_query_overlap(batch_slice: slice, binarytree: BinaryTreeType = None, query_points: ndarray = None, rotation: ndarray = None, translation: ndarray = None, rotation2: ndarray = None, translation2: ndarray = None, rotation3: ndarray = None, translation3: ndarray = None, rotation4: ndarray = None, translation4: ndarray = None, clash_distance: float = 2.1) -> dict[str, list]

Check for overlapping coordinates between a BinaryTree and a collection of query_points. Transform the query over multiple iterations

Parameters:

  • batch_slice (slice) –

    The slice of the incoming work to operate on

  • binarytree (BinaryTreeType, default: None ) –

    The tree to check all queries against

  • query_points (ndarray, default: None ) –

    The points to transform, then query against the tree

  • rotation (ndarray, default: None ) –
  • translation (ndarray, default: None ) –
  • rotation2 (ndarray, default: None ) –
  • translation2 (ndarray, default: None ) –
  • rotation3 (ndarray, default: None ) –
  • translation3 (ndarray, default: None ) –
  • rotation4 (ndarray, default: None ) –
  • translation4 (ndarray, default: None ) –
  • clash_distance (float, default: 2.1 ) –

    The distance to measure for query_point overlap, i.e. clashing

Returns:

  • dict[str, list]

    The number of overlaps found at each transformed query point as a dictionary

Source code in symdesign/protocols/fragdock.py
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
def check_tree_for_query_overlap(batch_slice: slice,
                                 binarytree: BinaryTreeType = None, query_points: np.ndarray = None,
                                 rotation: np.ndarray = None, translation: np.ndarray = None,
                                 rotation2: np.ndarray = None, translation2: np.ndarray = None,
                                 rotation3: np.ndarray = None, translation3: np.ndarray = None,
                                 rotation4: np.ndarray = None, translation4: np.ndarray = None,
                                 clash_distance: float = 2.1) -> dict[str, list]:
    """Check for overlapping coordinates between a BinaryTree and a collection of query_points.
    Transform the query over multiple iterations

    Args:
        batch_slice: The slice of the incoming work to operate on
        binarytree: The tree to check all queries against
        query_points: The points to transform, then query against the tree
        rotation:
        translation:
        rotation2:
        translation2:
        rotation3:
        translation3:
        rotation4:
        translation4:
        clash_distance: The distance to measure for query_point overlap, i.e. clashing

    Returns:
        The number of overlaps found at each transformed query point as a dictionary
    """
    _rotation = rotation[batch_slice]
    actual_batch_length = len(_rotation)
    # Transform the coordinates
    # Todo 3 for performing broadcasting of this operation
    #  s_broad = np.matmul(tiled_coords2[None, :, None, :], _full_rotation2[:, None, :, :])
    #  produces a shape of (len(_full_rotation2), len(tiled_coords2), 1, 3)
    #  inverse_transformed_model2_tiled_coords = transform_coordinate_sets(transform_coordinate_sets()).squeeze()
    transformed_query_points = \
        transform_coordinate_sets(
            transform_coordinate_sets(query_points[:actual_batch_length],  # Slice ensures same size
                                      rotation=_rotation,
                                      translation=None if translation is None
                                      else translation[batch_slice, None, :],
                                      rotation2=rotation2,  # setting matrix, no slice
                                      translation2=None if translation2 is None
                                      else translation2[batch_slice, None, :]),
            rotation=rotation3,  # setting matrix, no slice
            translation=None if translation3 is None else translation3[batch_slice, None, :],
            rotation2=rotation4[batch_slice],
            translation2=None if translation4 is None else translation4[batch_slice, None, :])

    clash_vect = [clash_distance]
    overlap_counts = \
        [binarytree.two_point_correlation(transformed_query_points[idx], clash_vect)[0]
         for idx in range(actual_batch_length)]

    return {'overlap_counts': overlap_counts}

fragment_dock

fragment_dock(input_models: Iterable[ContainsEntities]) -> list[PoseJob] | list

Perform the fragment docking routine described in Laniado, Meador, & Yeates, PEDS. 2021

Parameters:

  • input_models (Iterable[ContainsEntities]) –

    The Structures to be used in docking

Returns:

  • list[PoseJob] | list

    The resulting Poses satisfying docking criteria

Source code in symdesign/protocols/fragdock.py
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
def fragment_dock(input_models: Iterable[ContainsEntities]) -> list[PoseJob] | list:
    """Perform the fragment docking routine described in Laniado, Meador, & Yeates, PEDS. 2021

    Args:
        input_models: The Structures to be used in docking

    Returns:
        The resulting Poses satisfying docking criteria
    """
    frag_dock_time_start = time.time()

    # Todo reimplement this feature to write a log to the Project directory?
    # # Setup logger
    # if logger is None:
    #     log_file_path = os.path.join(project_dir, f'{building_blocks}_log.txt')
    # else:
    #     try:
    #         log_file_path = getattr(logger.handlers[0], 'baseFilename', None)
    #     except IndexError:  # No handler attached to this logger. Probably passing to a parent logger
    #         log_file_path = None
    #
    # if log_file_path:  # Start logging to a file in addition
    #     logger = start_log(name=building_blocks, handler=2, location=log_file_path, format_log=False, propagate=True)

    # Retrieve symjob.JobResources for all flags
    job = symjob.job_resources_factory.get()

    sym_entry: SymEntry = job.sym_entry
    """The SymmetryEntry object describing the material"""
    if sym_entry:
        protocol_name = putils.nanohedra
    else:
        protocol_name = putils.fragment_docking
    #
    # protocol = Protocol(name=protocol_name)
    job.fragment_db = fragment_factory(source=job.fragment_source)
    euler_lookup = job.fragment_db.euler_lookup
    # This is used in clustering algorithms to define an observation outside the found clusters
    outlier = -1
    initial_z_value = job.dock.initial_z_value
    """The acceptable standard deviation z score for initial fragment overlap identification. Smaller values lead to 
    more stringent matching criteria
    """
    min_matched = job.dock.minimum_matched
    """How many high quality fragment pairs should be present before a pose is identified?"""
    high_quality_match_value = job.dock.match_value
    """The value to exceed before a high quality fragment is matched. When z-value was used this was 1.0, however, 0.5
    when match score is used
    """
    rotation_step1 = job.dock.rotation_step1
    rotation_step2 = job.dock.rotation_step2
    # Todo 3 set below as parameters?
    measure_interface_during_dock = True
    low_quality_match_value = .2
    """The lower bounds on an acceptable match. Was upper bound of 2 using z-score"""
    clash_dist: float = 2.1
    """The distance to measure for clashing atoms"""
    cb_distance = 9.  # change to 8.?
    """The distance to measure for interface atoms"""
    # Testing if this is too strict when strict overlaps are used
    cluster_translations = not job.dock.contiguous_ghosts  # True
    translation_cluster_epsilon = 1
    # 1 works well at recapitulating the results without it while reducing number of checks
    # More stringent -> 0.75
    cluster_transforms = False  # True
    """Whether the entire transformation space should be clustered. This was found to be redundant with a translation
    clustering search only, and instead, decreases Pose solutions at the edge of oligomeric search slices  
    """
    transformation_cluster_epsilon = 1
    # 1 seems to work well at recapitulating the results without it
    # less stringent -> 0.75, removes about 20% found solutions
    # stringent -> 0.5, removes about %50 found solutions
    forward_reverse = False  # True
    # Todo 3 set above as parameters?
    high_quality_z_value = z_value_from_match_score(high_quality_match_value)
    low_quality_z_value = z_value_from_match_score(low_quality_match_value)

    if job.dock.perturb_dof_tx:
        if sym_entry.unit_cell:
            logger.critical(f"{create_perturbation_transformations.__name__} hasn't been tested for lattice symmetries")

    # Get score functions from input
    if job.dock.weight and isinstance(job.dock.weight, dict):
        # Todo actually use these during optimize_found_transformations_by_metrics()
        #  score_functions = metrics.pose.format_metric_functions(job.dock.weight.keys())
        default_weight_metric = None
    else:
        #  score_functions = {}
        if job.dock.proteinmpnn_score:
            weight_method = f'{putils.nanohedra}+{putils.proteinmpnn}'
        else:
            weight_method = putils.nanohedra

        default_weight_metric = resources.config.default_weight_parameter[weight_method]

    # Initialize incoming Structures
    models = []
    """The Structure instances to be used in docking"""
    # Assumes model is oriented with major axis of symmetry along z
    entity_count = count(1)
    for idx, (input_model, symmetry) in enumerate(zip(input_models, sym_entry.groups)):
        for entity in input_model.entities:
            if entity.is_symmetric():
                pass
            else:
                # Remove any unstructured termini from the Entity to allow the best secondary structure docking
                if job.trim_termini:
                    entity.delete_termini(how='unstructured')
                # Ensure models are oligomeric
                entity.make_oligomer(symmetry=symmetry)

        # Make, then save a new model based on the symmetric version of each Entity in the Model
        if input_model.number_of_entities > 2:
            # If this was a Pose, this is essentially what is happening
            # model = input_model.assembly
            model = Model.from_chains([chain for entity in input_model.entities for chain in entity.chains],
                                      name=input_model.name)
            raise NotImplementedError(f"Can't dock 2 Model instances with > 2 total Entity instances")
        else:
            model = input_model.entities[0].assembly
            model.name = input_model.name

        model.fragment_db = job.fragment_db
        # # Ensure the .metadata attribute is passed to each entity in the full assembly
        # # This is crucial for sql usage
        # for _entity, entity in zip(model.entities, input_model.entities):
        #     _entity.metadata = entity.metadata
        models.append(model)

    model1: Model
    model2: Model
    model1, model2 = models
    del models
    logger.info(f'DOCKING {model1.name} TO {model2.name}')

    # Set up output mechanism
    entry_string = f'NanohedraEntry{sym_entry.number}'
    building_blocks = '-'.join(input_model.name for input_model in input_models)
    if job.prefix:
        project = f'{job.prefix}{building_blocks}'
    else:
        project = building_blocks
    if job.suffix:
        project = f'{project}{job.suffix}'

    project = f'{entry_string}_{project}'
    project_dir = os.path.join(job.projects, project)
    putils.make_path(project_dir)
    if job.output_trajectory:
        if sym_entry.unit_cell:
            logger.warning('No unit cell dimensions applicable to the trajectory file')


    # Set up the TransformHasher to assist in scoring/pose output
    radius1 = model1.radius  # .distance_from_reference(measure='max')
    radius2 = model2.radius  # .distance_from_reference(measure='max')
    # Assume the maximum distance the box could get is the radius of each plus the interface distance
    box_width = radius1 + radius2 + cb_distance
    model_transform_hasher = TransformHasher(box_width)

    # Set up Building Block1
    get_complete_surf_frags1_time_start = time.time()
    surf_frags1 = model1.get_fragment_residues(residues=model1.surface_residues, fragment_db=model1.fragment_db)

    # Calculate the initial match type by finding the predominant surface type
    fragment_content1 = np.bincount([surf_frag.i_type for surf_frag in surf_frags1])
    initial_surf_type1 = np.argmax(fragment_content1)
    init_surf_frags1 = [surf_frag for surf_frag in surf_frags1 if surf_frag.i_type == initial_surf_type1]
    # For reverse/forward matching these two arrays must be made
    if forward_reverse:
        init_surf_guide_coords1 = np.array([surf_frag.guide_coords for surf_frag in init_surf_frags1])
        init_surf_residue_indices1 = np.array([surf_frag.index for surf_frag in init_surf_frags1])
    # surf_frag1_indices = [surf_frag.index for surf_frag in surf_frags1]
    idx = 1
    # logger.debug(f'Found surface guide coordinates {idx} with shape {surf_guide_coords1.shape}')
    # logger.debug(f'Found surface residue numbers {idx} with shape {surf_residue_numbers1.shape}')
    # logger.debug(f'Found surface indices {idx} with shape {surf_i_indices1.shape}')
    logger.debug(f'Found {len(init_surf_frags1)} initial surface {idx} fragments with type: {initial_surf_type1}')
    # logger.debug('Found component 2 fragment content: %s' % fragment_content2)
    # logger.debug('init_surf_frag_indices2: %s' % slice_variable_for_log(init_surf_frag_indices2))
    # logger.debug('init_surf_guide_coords2: %s' % slice_variable_for_log(init_surf_guide_coords2))
    # logger.debug('init_surf_residue_indices2: %s' % slice_variable_for_log(init_surf_residue_indices2))
    # logger.debug('init_surf_guide_coords1: %s' % slice_variable_for_log(init_surf_guide_coords1))
    # logger.debug('init_surf_residue_indices1: %s' % slice_variable_for_log(init_surf_residue_indices1))

    logger.info(f'Retrieved component{idx}-{model1.name} surface fragments and guide coordinates took '
                f'{time.time() - get_complete_surf_frags1_time_start:8f}s')

    #################################
    # Set up Building Block2
    # Get Surface Fragments With Guide Coordinates Using COMPLETE Fragment Database
    get_complete_surf_frags2_time_start = time.time()
    surf_frags2 = \
        model2.get_fragment_residues(residues=model2.surface_residues, fragment_db=model2.fragment_db)

    # Calculate the initial match type by finding the predominant surface type
    surf_guide_coords2 = np.array([surf_frag.guide_coords for surf_frag in surf_frags2])
    surf_residue_indices2 = np.array([surf_frag.index for surf_frag in surf_frags2])
    surf_i_indices2 = np.array([surf_frag.i_type for surf_frag in surf_frags2])
    fragment_content2 = np.bincount(surf_i_indices2)
    initial_surf_type2 = np.argmax(fragment_content2)
    init_surf_frag_indices2 = \
        [idx for idx, surf_frag in enumerate(surf_frags2) if surf_frag.i_type == initial_surf_type2]
    init_surf_guide_coords2 = surf_guide_coords2[init_surf_frag_indices2]
    init_surf_residue_indices2 = surf_residue_indices2[init_surf_frag_indices2]
    idx = 2
    logger.debug(f'Found surface guide coordinates {idx} with shape {surf_guide_coords2.shape}')
    logger.debug(f'Found surface residue numbers {idx} with shape {surf_residue_indices2.shape}')
    logger.debug(f'Found surface indices {idx} with shape {surf_i_indices2.shape}')
    logger.debug(
        f'Found {len(init_surf_residue_indices2)} initial surface {idx} fragments with type: {initial_surf_type2}')

    logger.info(f'Retrieved component{idx}-{model2.name} surface fragments and guide coordinates took '
                f'{time.time() - get_complete_surf_frags2_time_start:8f}s')

    # logger.debug('init_surf_frag_indices2: %s' % slice_variable_for_log(init_surf_frag_indices2))
    # logger.debug('init_surf_guide_coords2: %s' % slice_variable_for_log(init_surf_guide_coords2))
    # logger.debug('init_surf_residue_indices2: %s' % slice_variable_for_log(init_surf_residue_indices2))

    #################################
    # Get component 1 ghost fragments and associated data from complete fragment database
    component1_backbone_cb_tree = BallTree(model1.backbone_and_cb_coords)
    get_complete_ghost_frags1_time_start = time.time()
    ghost_frags_by_residue1 = \
        [frag.get_ghost_fragments(clash_tree=component1_backbone_cb_tree) for frag in surf_frags1]

    complete_ghost_frags1: list[GhostFragment] = \
        [ghost for ghosts in ghost_frags_by_residue1 for ghost in ghosts]

    ghost_guide_coords1 = np.array([ghost_frag.guide_coords for ghost_frag in complete_ghost_frags1])
    ghost_rmsds1 = np.array([ghost_frag.rmsd for ghost_frag in complete_ghost_frags1])
    ghost_residue_indices1 = np.array([ghost_frag.index for ghost_frag in complete_ghost_frags1])
    ghost_j_indices1 = np.array([ghost_frag.j_type for ghost_frag in complete_ghost_frags1])

    # Whether to use the overlap potential on the same component to filter ghost fragments
    if job.dock.contiguous_ghosts:
        # Prioritize search at those fragments which have same component, ghost fragment overlap
        contiguous_ghost_indices1 = make_contiguous_ghosts(ghost_frags_by_residue1, surf_frags1,
                                                           # distance=cb_distance,
                                                           initial_z_value=initial_z_value)
        initial_ghost_frags1 = [complete_ghost_frags1[idx] for idx in contiguous_ghost_indices1.tolist()]
        init_ghost_guide_coords1 = np.array([ghost_frag.guide_coords for ghost_frag in initial_ghost_frags1])
        init_ghost_rmsds1 = np.array([ghost_frag.rmsd for ghost_frag in initial_ghost_frags1])
        init_ghost_residue_indices1 = np.array([ghost_frag.index for ghost_frag in initial_ghost_frags1])
        # init_ghost_guide_coords1, init_ghost_rmsds1, init_ghost_residue_indices1 = \
        #     make_contiguous_ghosts(ghost_frags_by_residue1, surf_frags)
    else:
        init_ghost_frag_indices1 = \
            [idx for idx, ghost_frag in enumerate(complete_ghost_frags1) if ghost_frag.j_type == initial_surf_type2]
        init_ghost_guide_coords1: np.ndarray = ghost_guide_coords1[init_ghost_frag_indices1]
        init_ghost_rmsds1: np.ndarray = ghost_rmsds1[init_ghost_frag_indices1]
        init_ghost_residue_indices1: np.ndarray = ghost_residue_indices1[init_ghost_frag_indices1]

    idx = 1
    logger.debug(f'Found ghost guide coordinates {idx} with shape: {ghost_guide_coords1.shape}')
    logger.debug(f'Found ghost residue numbers {idx} with shape: {ghost_residue_indices1.shape}')
    logger.debug(f'Found ghost indices {idx} with shape: {ghost_j_indices1.shape}')
    logger.debug(f'Found ghost rmsds {idx} with shape: {ghost_rmsds1.shape}')
    logger.debug(f'Found {len(init_ghost_guide_coords1)} initial ghost {idx} fragments with type:'
                 f' {initial_surf_type2}')

    logger.info(f'Retrieved component{idx}-{model1.name} ghost fragments and guide coordinates '
                f'took {time.time() - get_complete_ghost_frags1_time_start:8f}s')
    #################################
    # Implemented for Todd to work on C1 instances
    if job.only_write_frag_info:
        # Whether to write fragment information to a directory (useful for fragment based docking w/o Nanohedra)
        guide_file_ghost = os.path.join(project_dir, f'{model1.name}_ghost_coords.txt')
        with open(guide_file_ghost, 'w') as f:
            for coord_group in ghost_guide_coords1.tolist():
                f.write('%s\n' % ' '.join('%f,%f,%f' % tuple(coords) for coords in coord_group))
        guide_file_ghost_idx = os.path.join(project_dir, f'{model1.name}_ghost_coords_index.txt')
        with open(guide_file_ghost_idx, 'w') as f:
            f.write('%s\n' % '\n'.join(map(str, ghost_j_indices1.tolist())))
        guide_file_ghost_res_num = os.path.join(project_dir, f'{model1.name}_ghost_coords_residue_number.txt')
        with open(guide_file_ghost_res_num, 'w') as f:
            f.write('%s\n' % '\n'.join(map(str, ghost_residue_indices1.tolist())))

        guide_file_surf = os.path.join(project_dir, f'{model2.name}_surf_coords.txt')
        with open(guide_file_surf, 'w') as f:
            for coord_group in surf_guide_coords2.tolist():
                f.write('%s\n' % ' '.join('%f,%f,%f' % tuple(coords) for coords in coord_group))
        guide_file_surf_idx = os.path.join(project_dir, f'{model2.name}_surf_coords_index.txt')
        with open(guide_file_surf_idx, 'w') as f:
            f.write('%s\n' % '\n'.join(map(str, surf_i_indices2.tolist())))
        guide_file_surf_res_num = os.path.join(project_dir, f'{model2.name}_surf_coords_residue_number.txt')
        with open(guide_file_surf_res_num, 'w') as f:
            f.write('%s\n' % '\n'.join(map(str, surf_residue_indices2.tolist())))

        start_slice = 0
        visualize_number = 15
        indices_of_interest = [0, 3, 5, 10]
        for idx, frags in enumerate(ghost_frags_by_residue1):
            if idx in indices_of_interest:
                number_of_fragments = len(frags)
                step_size = number_of_fragments // visualize_number
                # end_slice = start_slice * step_size
                residue_number = frags[0].number
                write_fragment_pairs_as_accumulating_states(
                    ghost_frags_by_residue1[idx][start_slice:number_of_fragments:step_size],
                    os.path.join(project_dir, f'{model1.name}_{residue_number}_paired_frags_'
                                              f'{start_slice}:{number_of_fragments}:{visualize_number}.pdb'))

        raise RuntimeError(
            f'Suspending operation of {model1.name}/{model2.name} after write')

    ij_type_match_lookup_table = compute_ij_type_lookup(ghost_j_indices1, surf_i_indices2)
    # Axis 0 is ghost frag, 1 is surface frag
    # ij_matching_ghost1_indices = \
    #     (ij_type_match_lookup_table * np.arange(len(ij_type_match_lookup_table)))[ij_type_match_lookup_table]
    # ij_matching_surf2_indices = \
    #     (ij_type_match_lookup_table * np.arange(ij_type_match_lookup_table.shape[1])[:, None])[
    #         ij_type_match_lookup_table]
    # Tod0 apparently this works to grab the flattened indices where there is overlap
    #  row_indices, column_indices = np.indices(ij_type_match_lookup_table.shape)
    #  # row index vary with ghost, column surf
    #  # transpose to index the first axis (axis=0) along the 1D row indices
    #  ij_matching_ghost1_indices = row_indices[ij_type_match_lookup_table.T]
    #  ij_matching_surf2_indices = column_indices[ij_type_match_lookup_table]
    #  >>> j = np.ones(22)
    #  >>> k = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]])
    #  >>> k.shape
    #  (2, 22)
    #  >>> j[k]
    #  array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
    #          1., 1., 1., 1., 1., 1.],
    #         [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
    #          1., 1., 1., 1., 1., 1.]])
    #  This will allow pulling out the indices where there is overlap which may be useful
    #  for limiting scope of overlap checks

    # Get component 2 ghost fragments and associated data from complete fragment database
    bb_cb_coords2 = model2.backbone_and_cb_coords

    # Whether to use the overlap potential on the same component to filter ghost fragments
    if forward_reverse:
        bb_cb_tree2 = BallTree(bb_cb_coords2)
        get_complete_ghost_frags2_time_start = time.time()
        ghost_frags_by_residue2 = \
            [frag.get_ghost_fragments(clash_tree=bb_cb_tree2) for frag in surf_frags2]

        complete_ghost_frags2: list[GhostFragment] = \
            [ghost for ghosts in ghost_frags_by_residue2 for ghost in ghosts]
        # complete_ghost_frags2 = []
        # for frag in surf_frags2:
        #     complete_ghost_frags2.extend(frag.get_ghost_fragments(clash_tree=bb_cb_tree2))

        if job.dock.contiguous_ghosts:
            # Prioritize search at those fragments which have same component, ghost fragment overlap
            contiguous_ghost_indices2 = make_contiguous_ghosts(ghost_frags_by_residue2, surf_frags2,
                                                               # distance=cb_distance,
                                                               initial_z_value=initial_z_value)
            initial_ghost_frags2 = [complete_ghost_frags2[idx] for idx in contiguous_ghost_indices2.tolist()]
            init_ghost_guide_coords2 = np.array([ghost_frag.guide_coords for ghost_frag in initial_ghost_frags2])
            # init_ghost_rmsds2 = np.array([ghost_frag.rmsd for ghost_frag in initial_ghost_frags2])
            init_ghost_residue_indices2 = np.array([ghost_frag.index for ghost_frag in initial_ghost_frags2])
            # init_ghost_guide_coords1, init_ghost_rmsds1, init_ghost_residue_indices1 = \
            #     make_contiguous_ghosts(ghost_frags_by_residue1, surf_frags)
        else:
            # init_ghost_frag_indices2 = \
            #     [idx for idx, ghost_frag in enumerate(complete_ghost_frags2) if ghost_frag.j_type == initial_surf_type1]
            # init_ghost_guide_coords2: np.ndarray = ghost_guide_coords2[init_ghost_frag_indices2]
            # # init_ghost_rmsds2: np.ndarray = ghost_rmsds2[init_ghost_frag_indices2]
            # init_ghost_residue_indices2: np.ndarray = ghost_residue_indices2[init_ghost_frag_indices2]
            initial_ghost_frags2 = [ghost_frag for ghost_frag in complete_ghost_frags2 if
                                    ghost_frag.j_type == initial_surf_type1]
            init_ghost_guide_coords2 = np.array([ghost_frag.guide_coords for ghost_frag in initial_ghost_frags2])
            init_ghost_residue_indices2 = np.array([ghost_frag.index for ghost_frag in initial_ghost_frags2])

        idx = 2
        logger.debug(
            f'Found {len(init_ghost_guide_coords2)} initial ghost {idx} fragments with type {initial_surf_type1}')
        # logger.debug('init_ghost_guide_coords2: %s' % slice_variable_for_log(init_ghost_guide_coords2))
        # logger.debug('init_ghost_residue_indices2: %s' % slice_variable_for_log(init_ghost_residue_indices2))
        # ghost2_residue_array = np.repeat(init_ghost_residue_indices2, len(init_surf_residue_indices1))
        # surface1_residue_array = np.tile(init_surf_residue_indices1, len(init_ghost_residue_indices2))
        logger.info(f'Retrieved component{idx}-{model2.name} ghost fragments and guide coordinates '
                    f'took {time.time() - get_complete_ghost_frags2_time_start:8f}s')

    # logger.debug(f'Found ghost guide coordinates {idx} with shape {ghost_guide_coords2.shape}')
    # logger.debug(f'Found ghost residue numbers {idx} with shape {ghost_residue_numbers2.shape}')
    # logger.debug(f'Found ghost indices {idx} with shape {ghost_j_indices2.shape}')
    # logger.debug(f'Found ghost rmsds {idx} with shape {ghost_rmsds2.shape}')
    # Prepare precomputed arrays for fast pair lookup
    # ghost1_residue_array = np.repeat(init_ghost_residue_indices1, len(init_surf_residue_indices2))
    # surface2_residue_array = np.tile(init_surf_residue_indices2, len(init_ghost_residue_indices1))

    logger.info('Obtaining rotation/degeneracy matrices')

    translation_perturb_steps = tuple(.5 for _ in range(sym_entry.number_dof_translation))
    """The number of angstroms to increment the translation degrees of freedom search for each model"""
    rotation_steps = [rotation_step1, rotation_step2]
    """The number of degrees to increment the rotational degrees of freedom search for each model"""
    number_of_degens = []
    number_of_rotations = []
    rotation_matrices = []
    for idx, rotation_step in enumerate(rotation_steps, 1):
        if getattr(sym_entry, f'is_internal_rot{idx}'):  # if rotation step required
            if rotation_step is None:
                rotation_step = 3  # Set rotation_step to default
            # Set sym_entry.rotation_step
            setattr(sym_entry, f'rotation_step{idx}', rotation_step)
        else:
            if rotation_step:
                logger.warning(f"Specified rotation_step{idx} was ignored. Oligomer {idx} doesn't have rotational DOF")
            rotation_step = 1  # Set rotation step to 1

        rotation_steps[idx - 1] = rotation_step
        degeneracy_matrices = getattr(sym_entry, f'degeneracy_matrices{idx}')
        # Todo 3 make reliant on scipy...Rotation
        # rotation_matrix = \
        #     scipy.spatial.transform.Rotation.from_euler('Z', [step * rotation_step
        #                                                       for step in range(number_of_steps)],
        #                                                 degrees=True).as_matrix()
        # rotations = \
        #     scipy.spatial.transform.Rotation.from_euler('Z', np.linspace(0, getattr(sym_entry, f'rotation_range{idx}'),
        #                                                                  number_of_steps),
        #                                                 degrees=True).as_matrix()
        # rot_degen_matrices = []
        # for idx in range(degeneracy_matrices):
        #    rot_degen_matrices = rotations * degeneracy_matrices[idx]
        # rot_degen_matrices = rotations * degeneracy_matrices
        # rotation_matrix = rotations.as_matrix()
        rotation_matrix = get_rot_matrices(rotation_step, 'z', getattr(sym_entry, f'rotation_range{idx}'))
        rot_degen_matrices = make_rotations_degenerate(rotation_matrix, degeneracy_matrices)
        logger.debug(f'Degeneracy shape for component {idx}: {degeneracy_matrices.shape}')
        logger.debug(f'Combined rotation/degeneracy shape for component {idx}: {rot_degen_matrices.shape}')
        degen_len = len(degeneracy_matrices)
        number_of_degens.append(degen_len)
        # logger.debug(f'Rotation shape for component {idx}: {rot_degen_matrices.shape}')
        number_of_rotations.append(len(rot_degen_matrices) // degen_len)
        rotation_matrices.append(rot_degen_matrices)

    set_mat1, set_mat2 = sym_entry.setting_matrix1, sym_entry.setting_matrix2

    # def check_forward_and_reverse(test_ghost_guide_coords, stack_rot1, stack_tx1,
    #                               test_surf_guide_coords, stack_rot2, stack_tx2,
    #                               reference_rmsds):
    #     """Debug forward versus reverse guide coordinate fragment matching
    #
    #     All guide_coords and reference_rmsds should be indexed to the same length and overlap
    #     """
    #     mismatch = False
    #     inv_set_mat1 = np.linalg.inv(set_mat1)
    #     for shift_idx in range(1):
    #         rot1 = stack_rot1[shift_idx]
    #         tx1 = stack_tx1[shift_idx]
    #         rot2 = stack_rot2[shift_idx]
    #         tx2 = stack_tx2[shift_idx]
    #
    #         tnsfmd_ghost_coords = transform_coordinate_sets(test_ghost_guide_coords,
    #                                                         rotation=rot1,
    #                                                         translation=tx1,
    #                                                         rotation2=set_mat1)
    #         tnsfmd_surf_coords = transform_coordinate_sets(test_surf_guide_coords,
    #                                                        rotation=rot2,
    #                                                        translation=tx2,
    #                                                        rotation2=set_mat2)
    #         int_euler_matching_ghost_indices, int_euler_matching_surf_indices = \
    #             euler_lookup.check_lookup_table(tnsfmd_ghost_coords, tnsfmd_surf_coords)
    #
    #         all_fragment_match = calculate_match(tnsfmd_ghost_coords[int_euler_matching_ghost_indices],
    #                                              tnsfmd_surf_coords[int_euler_matching_surf_indices],
    #                                              reference_rmsds[int_euler_matching_ghost_indices])
    #         high_qual_match_indices = np.flatnonzero(all_fragment_match >= high_quality_match_value)
    #         high_qual_match_count = len(high_qual_match_indices)
    #         if high_qual_match_count < min_matched:
    #             logger.info(
    #                 f'\t{high_qual_match_count} < {min_matched} Which is Set as the Minimal Required Amount of '
    #                 f'High Quality Fragment Matches')
    #
    #         # Find the passing overlaps to limit the output to only those passing the low_quality_match_value
    #         passing_overlaps_indices = np.flatnonzero(all_fragment_match >= low_quality_match_value)
    #         number_passing_overlaps = len(passing_overlaps_indices)
    #         logger.info(
    #             f'\t{high_qual_match_count} High Quality Fragments Out of {number_passing_overlaps} '
    #             f'Matches Found in Complete Fragment Library')
    #
    #         # now try inverse
    #         inv_rot_mat1 = np.linalg.inv(rot1)
    #         tnsfmd_surf_coords_inv = transform_coordinate_sets(tnsfmd_surf_coords,
    #                                                            rotation=inv_set_mat1,
    #                                                            translation=tx1 * -1,
    #                                                            rotation2=inv_rot_mat1)
    #         int_euler_matching_ghost_indices_inv, int_euler_matching_surf_indices_inv = \
    #             euler_lookup.check_lookup_table(test_ghost_guide_coords, tnsfmd_surf_coords_inv)
    #
    #         all_fragment_match = calculate_match(test_ghost_guide_coords[int_euler_matching_ghost_indices_inv],
    #                                              tnsfmd_surf_coords_inv[int_euler_matching_surf_indices_inv],
    #                                              reference_rmsds[int_euler_matching_ghost_indices_inv])
    #         high_qual_match_indices = np.flatnonzero(all_fragment_match >= high_quality_match_value)
    #         high_qual_match_count = len(high_qual_match_indices)
    #         if high_qual_match_count < min_matched:
    #             logger.info(
    #                 f'\tINV {high_qual_match_count} < {min_matched} Which is Set as the Minimal Required Amount'
    #                 f' of High Quality Fragment Matches')
    #
    #         # Find the passing overlaps to limit the output to only those passing the low_quality_match_value
    #         passing_overlaps_indices = np.flatnonzero(all_fragment_match >= low_quality_match_value)
    #         number_passing_overlaps = len(passing_overlaps_indices)
    #
    #         logger.info(
    #             f'\t{high_qual_match_count} High Quality Fragments Out of {number_passing_overlaps} '
    #             f'Matches Found in Complete Fragment Library')
    #
    #         def investigate_mismatch():
    #             logger.info(f'Euler True ghost/surf indices forward and inverse don\'t match. '
    #                      f'Shapes: Forward={int_euler_matching_ghost_indices.shape}, '
    #                      f'Inverse={int_euler_matching_ghost_indices_inv.shape}')
    #             logger.debug(f'tnsfmd_ghost_coords.shape {tnsfmd_ghost_coords.shape}')
    #             logger.debug(f'tnsfmd_surf_coords.shape {tnsfmd_surf_coords.shape}')
    #             int_euler_matching_array = \
    #                 euler_lookup.check_lookup_table(tnsfmd_ghost_coords, tnsfmd_surf_coords, return_bool=True)
    #             int_euler_matching_array_inv = \
    #                 euler_lookup.check_lookup_table(test_ghost_guide_coords, tnsfmd_surf_coords_inv, return_bool=True)
    #             # Change the shape to allow for relation to guide_coords
    #             different = np.where(int_euler_matching_array != int_euler_matching_array_inv,
    #                                  True, False).reshape(len(tnsfmd_ghost_coords), -1)
    #             ghost_indices, surface_indices = np.nonzero(different)
    #             logger.debug(f'different.shape {different.shape}')
    #
    #             different_ghosts = tnsfmd_ghost_coords[ghost_indices]
    #             different_surf = tnsfmd_surf_coords[surface_indices]
    #             tnsfmd_ghost_ints1, tnsfmd_ghost_ints2, tnsfmd_ghost_ints3 = \
    #                 euler_lookup.get_eulint_from_guides(different_ghosts)
    #             tnsfmd_surf_ints1, tnsfmd_surf_ints2, tnsfmd_surf_ints3 = \
    #                 euler_lookup.get_eulint_from_guides(different_surf)
    #             stacked_ints = np.stack([tnsfmd_ghost_ints1, tnsfmd_ghost_ints2, tnsfmd_ghost_ints3,
    #                                      tnsfmd_surf_ints1, tnsfmd_surf_ints2, tnsfmd_surf_ints3], axis=0).T
    #             logger.info(
    #                 f'The mismatched forward Euler ints are\n{[ints for ints in list(stacked_ints)[:10]]}\n')
    #
    #             different_ghosts_inv = test_ghost_guide_coords[ghost_indices]
    #             different_surf_inv = tnsfmd_surf_coords_inv[surface_indices]
    #             tnsfmd_ghost_ints_inv1, tnsfmd_ghost_ints_inv2, tnsfmd_ghost_ints_inv3 = \
    #                 euler_lookup.get_eulint_from_guides(different_ghosts_inv)
    #             tnsfmd_surf_ints_inv1, tnsfmd_surf_ints_inv2, tnsfmd_surf_ints_inv3 = \
    #                 euler_lookup.get_eulint_from_guides(different_surf_inv)
    #
    #             stacked_ints_inv = \
    #                 np.stack([tnsfmd_ghost_ints_inv1, tnsfmd_ghost_ints_inv2, tnsfmd_ghost_ints_inv3,
    #                           tnsfmd_surf_ints_inv1, tnsfmd_surf_ints_inv2, tnsfmd_surf_ints_inv3], axis=0).T
    #             logger.info(
    #                 f'The mismatched inverse Euler ints are\n{[ints for ints in list(stacked_ints_inv)[:10]]}\n')
    #
    #         if not np.array_equal(int_euler_matching_ghost_indices, int_euler_matching_ghost_indices_inv):
    #             mismatch = True
    #
    #         if not np.array_equal(int_euler_matching_surf_indices, int_euler_matching_surf_indices_inv):
    #             mismatch = True
    #
    #         if mismatch:
    #             investigate_mismatch()

    # if job.skip_transformation:
    #     transformation1 = unpickle(kwargs.get('transformation_file1'))
    #     full_rotation1, full_int_tx1, full_setting1, full_ext_tx1 = transformation1.values()
    #     transformation2 = unpickle(kwargs.get('transformation_file2'))
    #     full_rotation2, full_int_tx2, full_setting2, full_ext_tx2 = transformation2.values()
    # else:

    # Set up internal translation parameters
    # zshift1/2 must be 2d array, thus the , 2:3].T instead of , 2].T
    # [:, None, 2] would also work
    if sym_entry.is_internal_tx1:  # Add the translation to Z (axis=1)
        full_int_tx1 = []
        zshift1 = set_mat1[:, None, 2].T
    else:
        full_int_tx1 = zshift1 = None

    if sym_entry.is_internal_tx2:
        full_int_tx2 = []
        zshift2 = set_mat2[:, None, 2].T
    else:
        full_int_tx2 = zshift2 = None

    # Set up external translation parameters
    full_optimal_ext_dof_shifts = []
    if sym_entry.unit_cell:
        positive_indices = None
    else:
        # Ensure to slice by nothing, as None alone creates a new axis
        positive_indices = slice(None)

    # Initialize the OptimalTx object
    logger.debug(f'zshift1={zshift1}, zshift2={zshift2}, max_z_value={initial_z_value:2f}')
    optimal_tx = resources.OptimalTx.from_dof(sym_entry.external_dof, zshift1=zshift1, zshift2=zshift2,
                                              max_z_value=initial_z_value)

    number_of_init_ghost = len(init_ghost_guide_coords1)
    number_of_init_surf = len(init_surf_guide_coords2)
    total_ghost_surf_combinations = number_of_init_ghost * number_of_init_surf
    full_rotation1, full_rotation2 = [], []
    rotation_matrices1, rotation_matrices2 = rotation_matrices
    rotation_matrices_len1, rotation_matrices_len2 = len(rotation_matrices1), len(rotation_matrices2)
    number_of_rotations1, number_of_rotations2 = number_of_rotations
    # number_of_degens1, number_of_degens2 = number_of_degens

    # Perform Euler integer extraction for all rotations
    init_translation_time_start = time.time()
    # Rotate Oligomer1 surface and ghost guide coordinates using rotation_matrices1 and set_mat1
    # Must add a new axis so that the multiplication is broadcast
    ghost_frag1_guide_coords_rot_and_set = \
        transform_coordinate_sets(init_ghost_guide_coords1[None, :, :, :],
                                  rotation=rotation_matrices1[:, None, :, :],
                                  rotation2=set_mat1[None, None, :, :])
    # Unstack the guide coords to be shape (N, 3, 3)
    # eulerint_ghost_component1_1, eulerint_ghost_component1_2, eulerint_ghost_component1_3 = \
    #     euler_lookup.get_eulint_from_guides(ghost_frag1_guide_coords_rot_and_set.reshape((-1, 3, 3)))
    eulerint_ghost_component1 = \
        euler_lookup.get_eulint_from_guides_as_array(ghost_frag1_guide_coords_rot_and_set.reshape((-1, 3, 3)))
    # Next, for component 2
    surf_frags2_guide_coords_rot_and_set = \
        transform_coordinate_sets(init_surf_guide_coords2[None, :, :, :],
                                  rotation=rotation_matrices2[:, None, :, :],
                                  rotation2=set_mat2[None, None, :, :])
    # Reshape with the first axis (0) containing all the guide coordinate rotations stacked
    eulerint_surf_component2 = \
        euler_lookup.get_eulint_from_guides_as_array(surf_frags2_guide_coords_rot_and_set.reshape((-1, 3, 3)))
    if forward_reverse:
        surf_frag1_guide_coords_rot_and_set = \
            transform_coordinate_sets(init_surf_guide_coords1[None, :, :, :],
                                      rotation=rotation_matrices1[:, None, :, :],
                                      rotation2=set_mat1[None, None, :, :])
        ghost_frags2_guide_coords_rot_and_set = \
            transform_coordinate_sets(init_ghost_guide_coords2[None, :, :, :],
                                      rotation=rotation_matrices2[:, None, :, :],
                                      rotation2=set_mat2[None, None, :, :])
        eulerint_surf_component1 = \
            euler_lookup.get_eulint_from_guides_as_array(surf_frag1_guide_coords_rot_and_set.reshape((-1, 3, 3)))
        eulerint_ghost_component2 = \
            euler_lookup.get_eulint_from_guides_as_array(ghost_frags2_guide_coords_rot_and_set.reshape((-1, 3, 3)))

        stacked_surf_euler_int1 = eulerint_surf_component1.reshape((rotation_matrices_len1, -1, 3))
        stacked_ghost_euler_int2 = eulerint_ghost_component2.reshape((rotation_matrices_len2, -1, 3))
        # Improve indexing time by precomputing python objects
        stacked_ghost_euler_int2 = list(stacked_ghost_euler_int2)
        stacked_surf_euler_int1 = list(stacked_surf_euler_int1)
    # eulerint_surf_component2_1, eulerint_surf_component2_2, eulerint_surf_component2_3 = \
    #     euler_lookup.get_eulint_from_guides(surf_frags2_guide_coords_rot_and_set.reshape((-1, 3, 3)))

    # Reshape the reduced dimensional eulerint_components to again have the number_of_rotations length on axis 0,
    # the number of init_guide_coords on axis 1, and the 3 euler intergers on axis 2
    stacked_surf_euler_int2 = eulerint_surf_component2.reshape((rotation_matrices_len2, -1, 3))
    stacked_ghost_euler_int1 = eulerint_ghost_component1.reshape((rotation_matrices_len1, -1, 3))
    # Improve indexing time by precomputing python objects
    stacked_surf_euler_int2 = list(stacked_surf_euler_int2)
    stacked_ghost_euler_int1 = list(stacked_ghost_euler_int1)

    # stacked_surf_euler_int2_1 = eulerint_surf_component2_1.reshape((rotation_matrices_len2, -1))
    # stacked_surf_euler_int2_2 = eulerint_surf_component2_2.reshape((rotation_matrices_len2, -1))
    # stacked_surf_euler_int2_3 = eulerint_surf_component2_3.reshape((rotation_matrices_len2, -1))
    # stacked_ghost_euler_int1_1 = eulerint_ghost_component1_1.reshape((rotation_matrices_len1, -1))
    # stacked_ghost_euler_int1_2 = eulerint_ghost_component1_2.reshape((rotation_matrices_len1, -1))
    # stacked_ghost_euler_int1_3 = eulerint_ghost_component1_3.reshape((rotation_matrices_len1, -1))

    # The fragments being added to the pose are different than the fragments generated on the pose. This function
    # helped me elucidate that this was occurring
    # def check_offset_index(title):
    #     if pose.entities[-1].offset_index == 0:
    #         raise RuntimeError('The offset_index has changed to 0')
    #     else:
    #         print(f'{title} offset_index: {pose.entities[-1].offset_index}')
    if job.dock.quick:  # job.development:
        rotations_to_perform1 = min(len(rotation_matrices1), 13)
        rotations_to_perform2 = min(len(rotation_matrices2), 12)
        logger.critical(f'Development: Only sampling {rotations_to_perform1} by {rotations_to_perform2} rotations')
    else:
        rotations_to_perform1 = len(rotation_matrices1)
        rotations_to_perform2 = len(rotation_matrices2)

    # Todo 2 multiprocessing
    def initial_euler_search():
        pass

    if job.multi_processing:
        raise NotImplementedError(
            f"Can't perform {fragment_dock.__name__} using {flags.multi_processing.long} yet")
        rotation_pairs = None
        results = utils.mp_map(initial_euler_search, rotation_pairs, processes=job.cores)
    else:
        pass
        # results = []
        # for rot_pair in rotation_pairs:
        #     results.append(initial_euler_search(rot_pair))

    # Todo 3 resolve which mechanisms to use. guide coords or eulerints
    #  Below uses eulerints which work just fine.
    #  Timings on these from improved protocols shows about similar times to euler_lookup and calculate_overlap
    #  even with vastly different scales of the arrays. This ignores the fact that calculate_overlap uses a
    #  number of indexing steps including making the ij_match array formation, indexing against the ghost and
    #  surface arrays, the rmsd_reference construction
    #  |
    #  Given the lookups sort of irrelevance to the scoring (given very poor alignment), I could remove that
    #  step if it interfered with differentiability
    #  |
    #  Majority of time is spent indexing the 6D euler overlap arrays which should be quite easy to speed up given
    #  understanding of different computational efficiencies at this check
    logger.info('Querying building blocks for initial fragment overlap')
    # Get rotated component1 ghost fragment, component2 surface fragment guide coodinate pairs in the same Euler space
    perturb_dof = job.dock.perturb_dof
    total_dof_combinations = rotations_to_perform1 * rotations_to_perform2
    progress_iter = iter(tqdm(range(total_dof_combinations), bar_format=TQDM_BAR_FORMAT))
    for idx1 in range(rotations_to_perform1):
        rot1_count = idx1%number_of_rotations1 + 1
        degen1_count = idx1//number_of_rotations1 + 1
        rot_mat1 = rotation_matrices1[idx1]
        rotation_ghost_euler_ints1 = stacked_ghost_euler_int1[idx1]
        if forward_reverse:
            rotation_surf_euler_ints1 = stacked_surf_euler_int1[idx1]
        for idx2 in range(rotations_to_perform2):
            next(progress_iter)  # Updates progress bar
            # Rotate component2 surface and ghost fragment guide coordinates using rot_mat2 and set_mat2
            rot2_count = idx2%number_of_rotations2 + 1
            degen2_count = idx2//number_of_rotations2 + 1
            rot_mat2 = rotation_matrices2[idx2]

            logger.debug(f'***** OLIGOMER 1: Degeneracy {degen1_count} Rotation {rot1_count} | '
                         f'OLIGOMER 2: Degeneracy {degen2_count} Rotation {rot2_count} *****')

            euler_start = time.time()
            # euler_matched_surf_indices2, euler_matched_ghost_indices1 = \
            #     euler_lookup.lookup_by_euler_integers(stacked_surf_euler_int2_1[idx2],
            #                                           stacked_surf_euler_int2_2[idx2],
            #                                           stacked_surf_euler_int2_3[idx2],
            #                                           stacked_ghost_euler_int1_1[idx1],
            #                                           stacked_ghost_euler_int1_2[idx1],
            #                                           stacked_ghost_euler_int1_3[idx1],
            #                                           )
            euler_matched_surf_indices2, euler_matched_ghost_indices1 = \
                euler_lookup.lookup_by_euler_integers_as_array(stacked_surf_euler_int2[idx2],
                                                               rotation_ghost_euler_ints1)
            # # euler_lookup.lookup_by_euler_integers_as_array(eulerint_ghost_component2.reshape(number_of_rotations2,
            # #                                                                                  1, 3),
            # #                                                eulerint_surf_component1.reshape(number_of_rotations1,
            # #                                                                                 1, 3))
            if forward_reverse:
                euler_matched_ghost_indices_rev2, euler_matched_surf_indices_rev1 = \
                    euler_lookup.lookup_by_euler_integers_as_array(stacked_ghost_euler_int2[idx2],
                                                                   rotation_surf_euler_ints1)
            # Todo 3 resolve. eulerints

    # Todo 3 resolve. Below uses guide coords
    # # for idx1 in range(rotation_matrices):
    # # Iterating over more than 2 rotation matrix sets becomes hard to program dynamically owing to the permutations
    # # of the rotations and the application of the rotation/setting to each set of fragment information. It would be a
    # # bit easier if the same logic that is applied to the following routines, (similarity matrix calculation) putting
    # # the rotation of the second set of fragment information into the setting of the first by applying the inverse
    # # rotation and setting matrices to the second (or third...) set of fragments. Forget about this for now
    # init_time_start = time.time()
    # for idx1 in range(len(rotation_matrices1)):  # min(len(rotation_matrices1), 5)):  # Todo remove min
    #     # Rotate Oligomer1 Surface and Ghost Fragment Guide Coordinates using rot_mat1 and set_mat1
    #     rot1_count = idx1 % number_of_rotations1 + 1
    #     degen1_count = idx1 // number_of_rotations1 + 1
    #     rot_mat1 = rotation_matrices1[idx1]
    #     ghost_guide_coords_rot_and_set1 = \
    #         transform_coordinate_sets(init_ghost_guide_coords1, rotation=rot_mat1, rotation2=set_mat1)
    #     # surf_guide_coords_rot_and_set1 = \
    #     #     transform_coordinate_sets(init_surf_guide_coords1, rotation=rot_mat1, rotation2=set_mat1)
    #
    #     for idx2 in range(len(rotation_matrices2)):  # min(len(rotation_matrices2), 5)):  # Todo remove min
    #         # Rotate Oligomer2 Surface and Ghost Fragment Guide Coordinates using rot_mat2 and set_mat2
    #         rot2_count = idx2 % number_of_rotations2 + 1
    #         degen2_count = idx2 // number_of_rotations2 + 1
    #         rot_mat2 = rotation_matrices2[idx2]
    #         surf_guide_coords_rot_and_set2 = \
    #             transform_coordinate_sets(init_surf_guide_coords2, rotation=rot_mat2, rotation2=set_mat2)
    #         # ghost_guide_coords_rot_and_set2 = \
    #         #     transform_coordinate_sets(init_ghost_guide_coords2, rotation=rot_mat2, rotation2=set_mat2)
    #
    #         logger.info(f'***** OLIGOMER 1: Degeneracy {degen1_count} Rotation {rot1_count} | '
    #                     f'OLIGOMER 2: Degeneracy {degen2_count} Rotation {rot2_count} *****')
    #
    #         euler_start = time.time()
    #         # First returned variable has indices increasing 0,0,0,0,1,1,1,1,1,2,2,2,3,...
    #         # Second returned variable has indices increasing 2,3,4,14,...
    #         euler_matched_surf_indices2, euler_matched_ghost_indices1 = \
    #             euler_lookup.check_lookup_table(surf_guide_coords_rot_and_set2,
    #                                             ghost_guide_coords_rot_and_set1)
    #         # euler_matched_ghost_indices_rev2, euler_matched_surf_indices_rev1 = \
    #         #     euler_lookup.check_lookup_table(ghost_guide_coords_rot_and_set2,
    #         #                                     surf_guide_coords_rot_and_set1)
    # Todo 3 resolve. guide coords
            logger.debug(f'\tEuler search took {time.time() - euler_start:8f}s for '
                         f'{total_ghost_surf_combinations} ghost/surf pairs')

            if forward_reverse:
                # Ensure pairs are similar between euler_matched_surf_indices2 and euler_matched_ghost_indices_rev2
                # by indexing the residue_numbers
                # forward_reverse_comparison_start = time.time()
                # logger.debug(f'Euler indices forward, index 0: {euler_matched_surf_indices2[:10]}')
                forward_surface_indices2 = init_surf_residue_indices2[euler_matched_surf_indices2]
                # logger.debug(f'Euler indices forward, index 1: {euler_matched_ghost_indices1[:10]}')
                forward_ghosts_indices1 = init_ghost_residue_indices1[euler_matched_ghost_indices1]
                # logger.debug(f'Euler indices reverse, index 0: {euler_matched_ghost_indices_rev2[:10]}')
                reverse_ghosts_indices2 = init_ghost_residue_indices2[euler_matched_ghost_indices_rev2]
                # logger.debug(f'Euler indices reverse, index 1: {euler_matched_surf_indices_rev1[:10]}')
                reverse_surface_indices1 = init_surf_residue_indices1[euler_matched_surf_indices_rev1]

                # Make an index indicating where the forward and reverse euler lookups have the same residue pairs
                # Important! This method only pulls out initial fragment matches that go both ways, i.e. component1
                # surface (type1) matches with component2 ghost (type1) and vice versa, so the expanded checks of
                # for instance the surface loop (i type 3,4,5) with ghost helical (i type 1) matches is completely
                # unnecessary during euler look up as this will never be included
                # Also, this assumes that the ghost fragment display is symmetric, i.e. 1 (i) 1 (j) 10 (K) has an
                # inverse transform at 1 (i) 1 (j) 230 (k) for instance

                prior = 0
                number_overlapping_pairs = len(euler_matched_ghost_indices1)
                possible_overlaps = np.ones(number_overlapping_pairs, dtype=np.bool8)
                # Residue numbers are in order for forward_surface_indices2 and reverse_ghosts_indices2
                for residue_index in init_surf_residue_indices2:
                    # Where the residue number of component 2 is equal pull out the indices
                    forward_index = np.flatnonzero(forward_surface_indices2 == residue_index)
                    reverse_index = np.flatnonzero(reverse_ghosts_indices2 == residue_index)
                    # Next, use residue number indices to search for the same residue numbers in the extracted pairs
                    # The output array slice is only valid if the forward_index is the result of
                    # forward_surface_indices2 being in ascending order, which for check_lookup_table is True
                    current = prior + len(forward_index)
                    possible_overlaps[prior:current] = \
                        np.in1d(forward_ghosts_indices1[forward_index], reverse_surface_indices1[reverse_index])
                    prior = current

            # # Use for residue number debugging
            # possible_overlaps = np.ones(number_overlapping_pairs, dtype=np.bool8)

            # forward_ghosts_indices1[possible_overlaps]
            # forward_surface_indices2[possible_overlaps]

            # indexing_possible_overlap_time = time.time() - indexing_possible_overlap_start

            # number_of_successful = possible_overlaps.sum()
            # logger.info(f'\tIndexing {number_overlapping_pairs * len(euler_matched_surf_indices2)} '
            #             f'possible overlap pairs found only {number_of_successful} possible out of '
            #             f'{number_overlapping_pairs} (took {time.time() - forward_reverse_comparison_start:8f}s)')

            # passing_ghost_coords = ghost_guide_coords_rot_and_set1[possible_ghost_frag_indices]
            # passing_surf_coords = surf_guide_coords_rot_and_set2[euler_matched_surf_indices2[possible_overlaps]]

            # Get optimal shift parameters for initial (Ghost Fragment, Surface Fragment) guide coordinate pairs
            # # Todo these are from Guides
            # passing_ghost_coords = ghost_guide_coords_rot_and_set1[euler_matched_ghost_indices1]
            # passing_surf_coords = surf_guide_coords_rot_and_set2[euler_matched_surf_indices2]
            # # Todo these are from Guides
            # Todo debug With EulerInteger calculation
            if forward_reverse:
                # Take the boolean index of the indices
                possible_ghost_frag_indices = euler_matched_ghost_indices1[possible_overlaps]
                # possible_surf_frag_indices = euler_matched_surf_indices2[possible_overlaps]
                passing_ghost_coords = \
                    ghost_frag1_guide_coords_rot_and_set[idx1, possible_ghost_frag_indices]
                passing_surf_coords = \
                    surf_frags2_guide_coords_rot_and_set[idx2, euler_matched_surf_indices2[possible_overlaps]]
                reference_rmsds = init_ghost_rmsds1[possible_ghost_frag_indices]
            else:
                passing_ghost_coords = ghost_frag1_guide_coords_rot_and_set[idx1, euler_matched_ghost_indices1]
                # passing_ghost_coords = transform_coordinate_sets(init_ghost_guide_coords1[euler_matched_ghost_indices1],
                #                                                  rotation=rot_mat1, rotation2=set_mat1)
                passing_surf_coords = surf_frags2_guide_coords_rot_and_set[idx2, euler_matched_surf_indices2]
                # passing_surf_coords = transform_coordinate_sets(init_surf_guide_coords2[euler_matched_surf_indices2],
                #                                                 rotation=rot_mat2, rotation2=set_mat2)
                reference_rmsds = init_ghost_rmsds1[euler_matched_ghost_indices1]
            # Todo debug With EulerInteger calculation

            optimal_shifts_start = time.time()
            transform_passing_shifts = \
                optimal_tx.solve_optimal_shifts(passing_ghost_coords, passing_surf_coords, reference_rmsds)
            optimal_shifts_time = time.time() - optimal_shifts_start

            pre_cluster_passing_shifts = len(transform_passing_shifts)
            if pre_cluster_passing_shifts == 0:
                # logger.debug(f'optimal_shifts length: {len(optimal_shifts)}')
                # logger.debug(f'transform_passing_shifts shape: {len(transform_passing_shifts)}')
                logger.debug(f'\tNo transforms were found passing optimal shift criteria '
                             f'(took {optimal_shifts_time:8f}s)')
                continue
            elif cluster_translations:
                cluster_time_start = time.time()
                translation_cluster = \
                    DBSCAN(eps=translation_cluster_epsilon, min_samples=min_matched).fit(transform_passing_shifts)
                if perturb_dof:  # Later will be sampled more finely, so
                    # Get the core indices, i.e. the most dense translation regions only
                    transform_passing_shift_indexer = translation_cluster.core_sample_indices_
                else:  # Get any transform which isn't an outlier
                    transform_passing_shift_indexer = translation_cluster.labels_ != outlier
                transform_passing_shifts = transform_passing_shifts[transform_passing_shift_indexer]
                cluster_time = time.time() - cluster_time_start
                logger.debug(f'Clustering {pre_cluster_passing_shifts} possible transforms (took {cluster_time:8f}s)')
            # else:  # Use all translations
            #     pass

            if sym_entry.unit_cell:
                # Must take the optimal_ext_dof_shifts and multiply the column number by the corresponding row
                # in the sym_entry.external_dof#
                # optimal_ext_dof_shifts[0] scalar * sym_entry.group_external_dof[0] (1 row, 3 columns)
                # Repeat for additional DOFs, then add all up within each row.
                # For a single DOF, multiplication won't matter as only one matrix element will be available
                #
                # Must find positive indices before external_dof1 multiplication in case negatives there
                positive_indices = \
                    np.flatnonzero(np.all(transform_passing_shifts[:, :sym_entry.number_dof_external] >= 0, axis=1))
                number_passing_shifts = len(positive_indices)
                optimal_ext_dof_shifts = np.zeros((number_passing_shifts, 3), dtype=float)
                optimal_ext_dof_shifts[:, :sym_entry.number_dof_external] = \
                    transform_passing_shifts[positive_indices, :sym_entry.number_dof_external]
                # ^ I think for the sake of cleanliness, I need to make this matrix

                full_optimal_ext_dof_shifts.append(optimal_ext_dof_shifts)
            else:
                number_passing_shifts = len(transform_passing_shifts)

            # logger.debug(f'\tFound {number_passing_shifts} transforms after clustering from '
            #              f'{pre_cluster_passing_shifts} possible transforms (took '
            #              f'{time.time() - cluster_time_start:8f}s)')

            # Prepare the transformation parameters for storage in full transformation arrays
            # Use of [:, None] transforms the array into an array with each internal dof sored as a scalar in
            # axis 1 and each successive index along axis 0 as each passing shift

            # Stack each internal parameter along with a blank vector, this isolates the tx vector along z axis
            if full_int_tx1 is not None:
                # Store transformation parameters, indexing only those that are positive in the case of lattice syms
                full_int_tx1.extend(
                    transform_passing_shifts[positive_indices, sym_entry.number_dof_external].tolist())

            if full_int_tx2 is not None:
                # Store transformation parameters, indexing only those that are positive in the case of lattice syms
                full_int_tx2.extend(
                    transform_passing_shifts[positive_indices, sym_entry.number_dof_external + 1].tolist())

            full_rotation1.append(np.tile(rot_mat1, (number_passing_shifts, 1, 1)))
            full_rotation2.append(np.tile(rot_mat2, (number_passing_shifts, 1, 1)))

            logger.debug(f'\tOptimal shift search took {optimal_shifts_time:8f}s for '
                         f'{len(euler_matched_ghost_indices1)} guide coordinate pairs')
            logger.debug(f'\t{number_passing_shifts if number_passing_shifts else "No"} initial interface '
                         f'match{"es" if number_passing_shifts != 1 else ""} found '
                         f'(took {time.time() - euler_start:8f}s)')

    try:
        next(progress_iter)  # Updates progress bar
    except StopIteration:
        pass
    # -----------------------------------------------------------------------------------------------------------------
    # Below creates vectors for cluster transformations
    # Then asu clash testing, scoring, and symmetric clash testing are performed
    # -----------------------------------------------------------------------------------------------------------------
    if sym_entry.unit_cell:
        # optimal_ext_dof_shifts[:, :, None] <- None expands the axis to make multiplication accurate
        full_optimal_ext_dof_shifts = np.concatenate(full_optimal_ext_dof_shifts, axis=0)
        unsqueezed_optimal_ext_dof_shifts = full_optimal_ext_dof_shifts[:, :, None]
        external_dof1, external_dof2, *_ = sym_entry.external_dofs
        full_ext_tx1 = np.sum(unsqueezed_optimal_ext_dof_shifts * external_dof1, axis=-2)
        full_ext_tx2 = np.sum(unsqueezed_optimal_ext_dof_shifts * external_dof2, axis=-2)
        full_ext_tx_sum = full_ext_tx2 - full_ext_tx1
        del unsqueezed_optimal_ext_dof_shifts
    else:
        full_ext_tx1 = full_ext_tx2 = full_ext_tx_sum = full_optimal_ext_dof_shifts = None
        # full_optimal_ext_dof_shifts = list(repeat(None, number_passing_shifts))

    if not full_rotation1:  # There were no successful transforms
        logger.warning(f'No optimal translations found. Terminating {building_blocks} docking')
        return []
        # ------------------ TERMINATE DOCKING ------------------------
    # Make full, numpy vectorized transformations overwriting individual variables for memory management
    full_rotation1 = np.concatenate(full_rotation1, axis=0)
    full_rotation2 = np.concatenate(full_rotation2, axis=0)
    starting_transforms = len(full_rotation1)
    logger.info(f'Initial optimal translation search found {starting_transforms} total transforms '
                f'in {time.time() - init_translation_time_start:8f}s')

    if sym_entry.is_internal_tx1:
        stacked_internal_tx_vectors1 = np.zeros((starting_transforms, 3), dtype=float)
        # Add the translation to Z (axis=1)
        stacked_internal_tx_vectors1[:, -1] = full_int_tx1
        full_int_tx1 = stacked_internal_tx_vectors1
        del stacked_internal_tx_vectors1

    if sym_entry.is_internal_tx2:
        stacked_internal_tx_vectors2 = np.zeros((starting_transforms, 3), dtype=float)
        # Add the translation to Z (axis=1)
        stacked_internal_tx_vectors2[:, -1] = full_int_tx2
        full_int_tx2 = stacked_internal_tx_vectors2
        del stacked_internal_tx_vectors2

    # Make inverted transformations
    inv_setting1 = np.linalg.inv(set_mat1)
    full_inv_rotation1 = np.linalg.inv(full_rotation1)
    _full_rotation2 = full_rotation2.copy()
    if sym_entry.is_internal_tx1:
        # Invert by multiplying by -1
        full_int_tx_inv1 = full_int_tx1 * -1
    else:
        full_int_tx_inv1 = None
    if sym_entry.is_internal_tx2:
        _full_int_tx2 = full_int_tx2.copy()
    else:
        _full_int_tx2 = None

    # Define functions for making active transformation arrays and removing indices from them
    def create_transformation_group() -> tuple[dict[str, np.ndarray | None], dict[str, np.ndarray | None]]:
        """Create the transformation mapping for each transformation in the current docking trajectory

        Returns:
            Every stacked transformation operation for the two separate models being docked in two separate dictionaries
        """
        return (
            dict(rotation=full_rotation1, translation=None if full_int_tx1 is None else full_int_tx1[:, None, :],
                 rotation2=set_mat1, translation2=None if full_ext_tx1 is None else full_ext_tx1[:, None, :]),
            dict(rotation=full_rotation2, translation=None if full_int_tx2 is None else full_int_tx2[:, None, :],
                 rotation2=set_mat2, translation2=None if full_ext_tx2 is None else full_ext_tx2[:, None, :])
        )

    def remove_non_viable_indices_inverse(passing_indices: np.ndarray | list[int]):
        """Responsible for updating docking intermediate transformation parameters for inverse transform operations
        These include: full_inv_rotation1, _full_rotation2, full_int_tx_inv1, _full_int_tx2, and full_ext_tx_sum
        """
        nonlocal full_inv_rotation1, _full_rotation2, full_int_tx_inv1, _full_int_tx2, full_ext_tx_sum
        full_inv_rotation1 = full_inv_rotation1[passing_indices]
        _full_rotation2 = _full_rotation2[passing_indices]
        if sym_entry.is_internal_tx1:
            full_int_tx_inv1 = full_int_tx_inv1[passing_indices]
        if sym_entry.is_internal_tx2:
            _full_int_tx2 = _full_int_tx2[passing_indices]
        if sym_entry.unit_cell:
            full_ext_tx_sum = full_ext_tx_sum[passing_indices]

    def filter_transforms_by_indices(passing_indices: np.ndarray | list[int]):
        """Responsible for updating docking transformation parameters for transform operations. Will set the
        transformation in the order of the passing_indices

        Includes:
            full_rotation1, full_rotation2, full_int_tx1, full_int_tx2, full_optimal_ext_dof_shifts, full_ext_tx1, and
            full_ext_tx2

        Args:
            passing_indices: The indices which should be kept
        """
        nonlocal full_rotation1, full_rotation2, full_int_tx1, full_int_tx2
        full_rotation1 = full_rotation1[passing_indices]
        full_rotation2 = full_rotation2[passing_indices]
        if sym_entry.is_internal_tx1:
            full_int_tx1 = full_int_tx1[passing_indices]
        if sym_entry.is_internal_tx2:
            full_int_tx2 = full_int_tx2[passing_indices]

        if sym_entry.unit_cell:
            nonlocal full_optimal_ext_dof_shifts, full_ext_tx1, full_ext_tx2
            full_optimal_ext_dof_shifts = full_optimal_ext_dof_shifts[passing_indices]
            full_ext_tx1 = full_ext_tx1[passing_indices]
            full_ext_tx2 = full_ext_tx2[passing_indices]

    # Find the clustered transformations to expedite search of ASU clashing
    if cluster_transforms:
        clustering_start = time.time()
        # Todo 3
        #  Can I use cluster.cluster_transformation_pairs distance graph to provide feedback on other aspects of the
        #  dock? Seems that I could use the distances to expedite clashing checks, especially for more time consuming
        #  expansion checks such as the full material...
        # Must add a new axis to translations so the operations are broadcast together in transform_coordinate_sets()
        transform_neighbor_tree, transform_cluster = \
            cluster.cluster_transformation_pairs(*create_transformation_group(),
                                                 distance=transformation_cluster_epsilon,
                                                 minimum_members=min_matched
                                                 )
        # cluster_representative_indices, cluster_labels = \
        #     find_cluster_representatives(transform_neighbor_tree, transform_cluster)
        # representative_labels = cluster_labels[cluster_representative_indices]
        # Todo 3
        #  _, cluster_labels = find_cluster_representatives(transform_neighbor_tree, transform_cluster)
        # cluster_labels = transform_cluster.labels_
        # logger.debug(f'Shape of cluster_labels: {cluster_labels.shape}')
        # passing_transforms = cluster_labels != -1
        sufficiently_dense_indices = np.flatnonzero(transform_cluster.labels_ != -1)
        number_of_dense_transforms = len(sufficiently_dense_indices)

        logger.info(f'After clustering, {starting_transforms - number_of_dense_transforms} are missing the minimum '
                    f'number of close transforms to be viable. {number_of_dense_transforms} transforms '
                    f'remain (took {time.time() - clustering_start:8f}s)')
        if not number_of_dense_transforms:  # There were no successful transforms
            logger.warning(f'No viable transformations found. Terminating {building_blocks} docking')
            return []
        # ------------------ TERMINATE DOCKING ------------------------
        # Update the transformation array and counts with the sufficiently_dense_indices
        # Remove non-viable transforms by indexing sufficiently_dense_indices
        remove_non_viable_indices_inverse(sufficiently_dense_indices)
        del transform_neighbor_tree, transform_cluster
    else:
        sufficiently_dense_indices = np.arange(starting_transforms)
        number_of_dense_transforms = starting_transforms

    # if job.design.ignore_pose_clashes:
    #     logger.warning(f'Not checking for pose clashes per requested flag '
    #                    f'{flags.format_args(flags.ignore_pose_clashes_args)}')
    # else:
    # Transform coords to query for clashes
    # Set up chunks of coordinate transforms for clash testing
    check_clash_coords_start = time.time()
    calculation_size = number_of_dense_transforms
    # Start with the assumption that all tested clashes are clashing
    asu_clash_counts = np.ones(calculation_size)
    batch_length = get_check_tree_for_query_overlap_batch_length(bb_cb_coords2)
    batch_length = min((batch_length, calculation_size))

    # Setup function is performed before the function is executed
    def np_tile_wrap(length: int, coords: np.ndarray, *args, **kwargs):
        return dict(query_points=np.tile(coords, (length, 1, 1)))

    # Todo this is used in perturb_transformations with different 'size' and 'batch_length' that are going to snag
    #  at some point given the size of the perturb could be larger than the batch_length
    # Create the balltree clash check as a batched function
    @resources.ml.batch_calculation(size=calculation_size, batch_length=batch_length, setup=np_tile_wrap,
                                    compute_failure_exceptions=(np.core._exceptions._ArrayMemoryError,))
    def init_check_tree_for_query_overlap(*args, **kwargs):
        return check_tree_for_query_overlap(*args, **kwargs)

    logger.info(f'Testing found transforms for ASU clashes')
    # Using the inverse transform of the model2 backbone and cb (surface fragment) coordinates, check for clashes
    # with the model1 backbone and cb coordinates BinaryTree
    ball_tree_kwargs = dict(binarytree=component1_backbone_cb_tree, clash_distance=clash_dist,
                            rotation=_full_rotation2, translation=_full_int_tx2,
                            rotation2=set_mat2, translation2=full_ext_tx_sum,
                            rotation3=inv_setting1, translation3=full_int_tx_inv1,
                            rotation4=full_inv_rotation1)

    overlap_return = init_check_tree_for_query_overlap(
        **ball_tree_kwargs, return_containers={'overlap_counts': asu_clash_counts}, setup_args=(bb_cb_coords2,))
    # Extract the data
    asu_clash_counts = overlap_return['overlap_counts']
    # Find those indices where the asu_clash_counts is not zero (inverse of nonzero by using the array == 0)
    asu_is_viable_indices = np.flatnonzero(asu_clash_counts == 0)
    number_non_clashing_transforms = len(asu_is_viable_indices)
    # Update the passing_transforms
    # passing_transforms contains all the transformations that are still passing
    # index the previously passing indices (sufficiently_dense_indices) by new pasing indices (asu_is_viable_indices)
    # and set each of these indices to 1 (True)
    # passing_transforms[sufficiently_dense_indices[asu_is_viable_indices]] = 1
    logger.info(f"Clash testing for identified poses found {number_non_clashing_transforms} viable ASU's out of "
                f'{number_of_dense_transforms} (took {time.time() - check_clash_coords_start:8f}s)')

    if not number_non_clashing_transforms:
        logger.warning(f'No viable asymmetric units. Terminating {building_blocks} docking')
        return []
    # ------------------ TERMINATE DOCKING ------------------------
    # Clean memory
    del asu_clash_counts, ball_tree_kwargs, overlap_return
    # Remove non-viable transforms by indexing asu_is_viable_indices
    remove_non_viable_indices_inverse(asu_is_viable_indices)

    # Query PDB1 CB Tree for all PDB2 CB Atoms within "cb_distance" in A of a PDB1 CB Atom
    # alternative route to measure clashes of each transform. Move copies of component2 to interact with model1 ORIGINAL
    int_cb_and_frags_start = time.time()
    # Transform the CB coords of component 2 to each identified transformation
    # Transforming only surface frags has large speed benefits from not having to transform all ghosts
    inverse_transformed_model2_tiled_cb_coords = \
        transform_coordinate_sets(
            transform_coordinate_sets(np.tile(model2.cb_coords, (number_non_clashing_transforms, 1, 1)),
                                      rotation=_full_rotation2,
                                      translation=None if full_int_tx2 is None else _full_int_tx2[:, None, :],
                                      rotation2=set_mat2,
                                      translation2=None if sym_entry.unit_cell is None
                                      else full_ext_tx_sum[:, None, :]),
            rotation=inv_setting1,
            translation=None if full_int_tx1 is None else full_int_tx_inv1[:, None, :],
            rotation2=full_inv_rotation1)

    # Transform the surface guide coords of component 2 to each identified transformation
    # Makes a shape (len(full_rotations), len(surf_guide_coords), 3, 3)
    inverse_transformed_surf_frags2_guide_coords = \
        transform_coordinate_sets(
            transform_coordinate_sets(surf_guide_coords2[None, :, :, :],
                                      rotation=_full_rotation2[:, None, :, :],
                                      translation=None if full_int_tx2 is None else _full_int_tx2[:, None, None, :],
                                      rotation2=set_mat2[None, None, :, :],
                                      translation2=None if sym_entry.unit_cell is None
                                      else full_ext_tx_sum[:, None, None, :]),
            rotation=inv_setting1[None, None, :, :],
            translation=None if full_int_tx1 is None else full_int_tx_inv1[:, None, None, :],
            rotation2=full_inv_rotation1[:, None, :, :])

    logger.info('Transformation of viable component 2 CB atoms and surface fragments '
                f'(took {time.time() - int_cb_and_frags_start:8f}s)')

    del full_inv_rotation1, _full_rotation2, full_int_tx_inv1, _full_int_tx2, full_ext_tx_sum
    del surf_guide_coords2
    # Use below instead of this until can Todo 3 vectorize asu_interface_residue_processing
    # asu_interface_residues = \
    #     np.array([component1_backbone_cb_tree.query_radius(inverse_transformed_model2_tiled_cb_coords[idx],
    #                                                       cb_distance)
    #               for idx in range(len(inverse_transformed_model2_tiled_cb_coords))])

    # Full Interface Fragment Match
    # Gather the data for efficient querying of model1 and model2 interactions
    model1_cb_balltree = BallTree(model1.cb_coords)
    model1_cb_indices = model1.cb_indices
    model1_coords_indexed_residues = model1.coords_indexed_residues
    model2_cb_indices = model2.cb_indices
    model2_coords_indexed_residues = model2.coords_indexed_residues
    zero_counts = []

    # Save all the indices were matching fragments are identified
    interface_is_viable = []
    # all_passing_ghost_indices = []
    # all_passing_surf_indices = []
    # all_passing_z_scores = []
    # Get residue number for all model1, model2 CB Pairs that interact within cb_distance
    for idx in tqdm(range(number_non_clashing_transforms), bar_format=TQDM_BAR_FORMAT):
        # query/contact pairs/isin  - 0.028367  <- I predict query is about 0.015
        # indexing guide_coords     - 0.000389
        # total get_int_frags_time  - 0.028756 s

        # indexing guide_coords     - 0.000389
        # Euler Lookup              - 0.008161 s for 71435 fragment pairs
        # Overlap Score Calculation - 0.000365 s for 2949 fragment pairs
        # Total Match time          - 0.008915 s

        # query                     - 0.000895 s <- 100 fold shorter than predict
        # contact pairs             - 0.019595
        # isin indexing             - 0.008992 s
        # indexing guide_coords     - 0.000438
        # get_int_frags_time        - 0.029920 s

        # indexing guide_coords     - 0.000438
        # Euler Lookup              - 0.005603 s for 35400 fragment pairs
        # Overlap Score Calculation - 0.000209 s for 887 fragment pairs
        # Total Match time          - 0.006250 s

        # int_frags_time_start = time.time()
        model2_query = model1_cb_balltree.query_radius(inverse_transformed_model2_tiled_cb_coords[idx], cb_distance)
        # model1_cb_balltree_time = time.time() - int_frags_time_start

        contacting_residue_idx_pairs = [(model1_coords_indexed_residues[model1_cb_indices[model1_idx]].index,
                                         model2_coords_indexed_residues[model2_cb_indices[model2_idx]].index)
                                        for model2_idx, model1_contacts in enumerate(model2_query.tolist())
                                        for model1_idx in model1_contacts.tolist()]
        try:
            interface_residue_indices1, interface_residue_indices2 = \
                map(list, map(set, zip(*contacting_residue_idx_pairs)))
        except ValueError:  # Interface contains no residues, so not enough values to unpack
            logger.warning('Interface contains no residues')
            continue

        # Find the indices where the fragment residue numbers are found the interface residue numbers
        # is_in_index_start = time.time()
        # Since *_residue_numbers1/2 are the same index as the complete fragment arrays, these interface indices are the
        # same index as the complete guide coords and rmsds as well
        # Both residue numbers are one-indexed vv
        # Todo 3 make ghost_residue_indices1 unique -> unique_ghost_residue_numbers1
        #  index selected numbers against per_residue_ghost_indices 2d (number surface frag residues,
        ghost_indices_in_interface1 = \
            np.flatnonzero(np.isin(ghost_residue_indices1, interface_residue_indices1))
        surf_indices_in_interface2 = \
            np.flatnonzero(np.isin(surf_residue_indices2, interface_residue_indices2, assume_unique=True))

        # is_in_index_time = time.time() - is_in_index_start
        all_fragment_match_time_start = time.time()

        # unique_interface_frag_count_model1, unique_interface_frag_count_model2 = \
        #     len(ghost_indices_in_interface1), len(surf_indices_in_interface2)
        # get_int_frags_time = time.time() - int_frags_time_start
        # logger.debug(f'\tNewly formed interface contains {unique_interface_frag_count_model1} unique Fragments on '
        #              f'Oligomer 1 from {len(interface_residue_numbers1)} Residues and '
        #              f'{unique_interface_frag_count_model2} on Oligomer 2 from {len(interface_residue_numbers2)} '
        #              f'Residues\n\t(took {get_int_frags_time:8f}s to get interface fragments, including '
        #              f'{model1_cb_balltree_time:8f}s to query distances, '
        #              f'{is_in_index_time:8f}s to index residue numbers)')

        number_int_surf = len(surf_indices_in_interface2)
        number_int_ghost = len(ghost_indices_in_interface1)
        # maximum_number_of_pairs = number_int_ghost*number_int_surf
        # if maximum_number_of_pairs < euler_lookup_size_threshold:
        # Tod0 at one point, there might have been a memory leak by Pose objects sharing memory with persistent objects
        #  that prevent garbage collection and stay attached to the run
        # Skipping EulerLookup as it has issues with precision
        index_ij_pairs_start_time = time.time()
        ghost_indices_repeated = np.repeat(ghost_indices_in_interface1, number_int_surf)
        surf_indices_tiled = np.tile(surf_indices_in_interface2, number_int_ghost)
        ij_type_match = ij_type_match_lookup_table[ghost_indices_repeated, surf_indices_tiled]
        # DEBUG: If ij_type_match needs to be removed for testing
        # ij_type_match = np.array([True for _ in range(len(ij_type_match))])
        # Surface selecting
        # [0, 1, 3, 5, ...] with fancy indexing [0, 1, 5, 10, 12, 13, 34, ...]
        # possible_fragments_pairs = len(ghost_indices_repeated)
        passing_ghost_indices = ghost_indices_repeated[ij_type_match]
        passing_surf_indices = surf_indices_tiled[ij_type_match]
        # else:  # Narrow candidates by EulerLookup
        #     Get (Oligomer1 Interface Ghost Fragment, Oligomer2 Interface Surface Fragment) guide coordinate pairs
        #     in the same Euler rotational space bucket
        #     DON'T think this is crucial! ###
        #     int_euler_matching_ghost_indices1, int_euler_matching_surf_indices2 = \
        #         euler_lookup.check_lookup_table(int_trans_ghost_guide_coords, int_trans_surf_guide_coords2)
        #     logger.debug('Euler lookup')
        #     logger.warning(f'The interface size is too large ({maximum_number_of_pairs} maximum pairs). '
        #                    f'Trimming possible fragments by EulerLookup')
        #     eul_lookup_start_time = time.time()
        #     int_ghost_guide_coords1 = ghost_guide_coords1[ghost_indices_in_interface1]
        #     int_trans_surf_guide_coords2 = inverse_transformed_surf_frags2_guide_coords[idx, surf_indices_in_interface2]
        #     # Todo Debug skipping EulerLookup to see if issues with precision
        #     int_euler_matching_ghost_indices1, int_euler_matching_surf_indices2 = \
        #         euler_lookup.check_lookup_table(int_ghost_guide_coords1, int_trans_surf_guide_coords2)
        #     # logger.debug(f'int_euler_matching_ghost_indices1: {int_euler_matching_ghost_indices1[:5]}')
        #     # logger.debug(f'int_euler_matching_surf_indices2: {int_euler_matching_surf_indices2[:5]}')
        #     eul_lookup_time = time.time() - eul_lookup_start_time
        #
        #     # Find the ij_type_match which is the same length as the int_euler_matching indices
        #     # this has data type bool so indexing selects al original
        #     index_ij_pairs_start_time = time.time()
        #     ij_type_match = \
        #         ij_type_match_lookup_table[
        #             ghost_indices_in_interface1[int_euler_matching_ghost_indices1],
        #             surf_indices_in_interface2[int_euler_matching_surf_indices2]]
        #     possible_fragments_pairs = len(int_euler_matching_ghost_indices1)
        #
        #     # Get only euler matching fragment indices that pass ij filter. Then index their associated coords
        #     passing_ghost_indices = int_euler_matching_ghost_indices1[ij_type_match]
        #     # passing_ghost_coords = int_trans_ghost_guide_coords[passing_ghost_indices]
        #     # passing_ghost_coords = int_ghost_guide_coords1[passing_ghost_indices]
        #     passing_surf_indices = int_euler_matching_surf_indices2[ij_type_match]
        #     # passing_surf_coords = int_trans_surf_guide_coords2[passing_surf_indices]
        #     DON'T think this is crucial! ###

        # Calculate z_value for the selected (Ghost Fragment, Interface Fragment) guide coordinate pairs
        # Calculate match score for the selected (Ghost Fragment, Interface Fragment) guide coordinate pairs
        overlap_score_time_start = time.time()

        all_fragment_z_score = rmsd_z_score(ghost_guide_coords1[passing_ghost_indices],
                                            inverse_transformed_surf_frags2_guide_coords[idx, passing_surf_indices],
                                            ghost_rmsds1[passing_ghost_indices])
        # all_fragment_match = calculate_match(ghost_guide_coords1[passing_ghost_indices],
        #                                      inverse_transformed_surf_frags2_guide_coords[idx, passing_surf_indices],
        #                                      ghost_rmsds1[passing_ghost_indices])
        # number_of_checks = len(passing_ghost_indices)
        logger.debug(
            # f'\tEuler Lookup found {len(int_euler_matching_ghost_indices1)} passing overlaps '
            #      f'(took {eul_lookup_time:8f}s) for '
            #      f'{unique_interface_frag_count_model1 * unique_interface_frag_count_model2} fragment pairs and '
            f'\tZ-score calculation took {time.time() - overlap_score_time_start:8f}s for '
            f'{len(passing_ghost_indices)} successful ij type matches (indexing time '
            f'{overlap_score_time_start - index_ij_pairs_start_time:8f}s) from '
            f'{len(ghost_indices_repeated)} possible fragment pairs')

        # Check if the pose has enough high quality fragment matches
        # high_qual_match_indices = np.flatnonzero(all_fragment_match >= high_quality_match_value)
        # high_qual_match_indices = np.flatnonzero(all_fragment_z_score <= high_quality_z_value)
        # Using ar.size() - np.count_nonzero(ar) to count
        # high_qual_match_count = number_of_checks - np.count_nonzero(all_fragment_z_score <= high_quality_z_value)
        high_qual_match_count = np.count_nonzero(all_fragment_z_score <= high_quality_z_value)
        all_fragment_match_time = time.time() - all_fragment_match_time_start
        if high_qual_match_count < min_matched:
            logger.debug(f'\t{high_qual_match_count} < {min_matched}, the minimal high quality fragment matches '
                         f'(took {all_fragment_match_time:8f}s)')
            # Debug. Why are there no matches... cb_distance?
            # I think it is the accuracy of binned euler_angle lookup
            if high_qual_match_count == 0:
                zero_counts.append(1)
            continue
        else:
            # Find the passing overlaps to limit the output to only those passing the low_quality_match_value
            # passing_overlaps_indices = np.flatnonzero(all_fragment_match >= low_quality_match_value)
            # passing_overlaps_indices = np.flatnonzero(all_fragment_z_score <= low_quality_z_value)
            # number_passing_overlaps = len(passing_overlaps_indices)
            # number_passing_overlaps = number_of_checks - np.count_nonzero(all_fragment_z_score <= low_quality_z_value)
            number_passing_overlaps = np.count_nonzero(all_fragment_z_score <= low_quality_z_value)
            logger.debug(f'\t{high_qual_match_count} high quality fragments out of {number_passing_overlaps} matches '
                         f'found (took {all_fragment_match_time:8f}s)')
            # Return the indices sorted by z_value in ascending order, truncated at the number of passing
            # sorted_fragment_indices = np.argsort(all_fragment_z_score)[:number_passing_overlaps]
            # sorted_match_scores = match_score_from_z_value(sorted_z_values)
            # logger.debug('Overlapping Match Scores: %s' % sorted_match_scores)
            # sorted_overlap_indices = passing_overlaps_indices[sorted_fragment_indices]
            # interface_ghost_frags = \
            #     complete_ghost_frags1[interface_ghost_indices1][passing_ghost_indices[sorted_overlap_indices]]
            # interface_surf_frags = \
            #     surf_frags2[surf_indices_in_interface2][passing_surf_indices[sorted_overlap_indices]]
            # overlap_passing_ghosts = passing_ghost_indices[sorted_fragment_indices]
            # all_passing_ghost_indices.append(passing_ghost_indices[sorted_fragment_indices])
            # all_passing_surf_indices.append(passing_surf_indices[sorted_fragment_indices])
            # all_passing_z_scores.append(all_fragment_z_score[sorted_fragment_indices])
            interface_is_viable.append(idx)
            # logger.debug(f'\tInterface fragment search time took {time.time() - int_frags_time_start:8f}')
            continue

    logger.debug(f'Found {len(zero_counts)} zero counts')
    number_viable_pose_interfaces = len(interface_is_viable)
    if number_viable_pose_interfaces == 0:
        logger.warning(f'No interfaces have enough fragment matches. Terminating {building_blocks} docking')
        return []
    # ------------------ TERMINATE DOCKING ------------------------
    # Clean memory
    del inverse_transformed_model2_tiled_cb_coords, inverse_transformed_surf_frags2_guide_coords
    del ghost_residue_indices1, surf_residue_indices2
    del ghost_guide_coords1, ghost_rmsds1
    del model1, model1_cb_indices, model1_coords_indexed_residues
    del model2, model2_cb_indices, model2_coords_indexed_residues
    del model1_cb_balltree, model2_query, contacting_residue_idx_pairs
    del interface_residue_indices1, interface_residue_indices2
    del ghost_indices_in_interface1, surf_indices_in_interface2
    del ij_type_match, ghost_indices_repeated, surf_indices_tiled
    del all_fragment_z_score, zero_counts
    # del all_fragment_z_score, zero_counts, passing_overlaps_indices
    logger.info(f'Found {number_viable_pose_interfaces} poses with viable interfaces')
    # # Tod0 remove below. It is never accessed by pose. Perhaps downstream it could be but Entity instances are
    # #  already solved now with sql.ProteinMetadata
    # # Generate the Pose for output handling
    # entity_info = {entity_name: data for model in models
    #                for entity_name, data in model.entity_info.items()}
    # chain_gen = chain_id_generator()
    # for entity_name, data in entity_info.items():
    #     data['chains'] = [next(chain_gen)]
    if sym_entry.unit_cell:
        # Calculate the vectorized uc_dimensions
        full_uc_dimensions = sym_entry.get_uc_dimensions(full_optimal_ext_dof_shifts)
        uc_dimensions = full_uc_dimensions[0]
    else:
        uc_dimensions = None

    pose = Pose.from_entities([entity for model in input_models for entity in model.entities],
                              log=True if job.debug else None,
                              sym_entry=sym_entry, name='asu', fragment_db=job.fragment_db,  # entity_info=entity_info,
                              surrounding_uc=True, rename_chains=True, uc_dimensions=uc_dimensions)

    # Ensure .metadata attribute is passed to each entity in the full assembly
    # This is crucial for sql usage
    entity_idx = count()
    for input_model in input_models:
        for entity in input_model.entities:
            pose.entities[next(entity_idx)].metadata = entity.metadata
    # Set up coordinates to transform the Pose with each Entity individually
    entity_start_coords = [entity.coords for input_model in input_models for entity in input_model.entities]
    entity_idx = count()
    transform_indices = {next(entity_idx): transform_idx
                         for transform_idx, input_model in enumerate(input_models)
                         for _ in input_model.entities}
    # Calculate thermophilicity
    is_thermophilic = [entity.thermophilicity for idx, entity in enumerate(pose.entities, idx)]
    pose_thermophilicity = sum(is_thermophilic) / pose.number_of_entities

    # Define functions for updating the single Pose instance coordinates
    # def create_specific_transformation(idx: int) -> tuple[dict[str, np.ndarray], ...]:
    #     """Take the current transformation index and create a mapping of the transformation operations
    #
    #     Args:
    #         idx: The index of the transformation to select
    #     Returns:
    #         A tuple containing the transformation operations for each model
    #     """
    #     if sym_entry.is_internal_tx1:
    #         internal_tx_param1 = full_int_tx1[idx]
    #     else:
    #         internal_tx_param1 = None
    #
    #     if sym_entry.is_internal_tx2:
    #         internal_tx_param2 = full_int_tx2[idx]
    #     else:
    #         internal_tx_param2 = None
    #
    #     if sym_entry.unit_cell:
    #         external_tx1 = full_ext_tx1[idx]
    #         external_tx2 = full_ext_tx2[idx]
    #     else:
    #         external_tx1 = external_tx2 = None
    #
    #     specific_transformation1 = dict(rotation=full_rotation1[idx], translation=internal_tx_param1,
    #                                     rotation2=set_mat1, translation2=external_tx1)
    #     specific_transformation2 = dict(rotation=full_rotation2[idx], translation=internal_tx_param2,
    #                                     rotation2=set_mat2, translation2=external_tx2)
    #     return specific_transformation1, specific_transformation2

    # Todo 3 if using individual Poses
    #  def clone_pose(idx: int) -> Pose:
    #      # Create a copy of the base Pose
    #      new_pose = copy.copy(pose)
    #      if sym_entry.unit_cell:
    #          # Set the next unit cell dimensions
    #          new_pose.uc_dimensions = full_uc_dimensions[idx]
    #      # Update the Pose coords
    #      new_pose.coords = np.concatenate(new_coords)
    #      return new_pose

    def update_pose_coords(idx: int):
        """Take the current transformation index and update the reference coordinates with the provided transforms

        Args:
            idx: The index of the transformation to select
        """
        copy_model_start = time.time()
        if sym_entry.is_internal_tx1:
            internal_tx_param1 = full_int_tx1[idx]
        else:
            internal_tx_param1 = None

        if sym_entry.is_internal_tx2:
            internal_tx_param2 = full_int_tx2[idx]
        else:
            internal_tx_param2 = None

        if sym_entry.unit_cell:
            external_tx1 = full_ext_tx1[idx]
            external_tx2 = full_ext_tx2[idx]
            # uc_dimensions = full_uc_dimensions[idx]
            # Set the next unit cell dimensions
            pose.uc_dimensions = full_uc_dimensions[idx]
        else:
            external_tx1 = external_tx2 = None

        specific_transformation1 = dict(rotation=full_rotation1[idx], translation=internal_tx_param1,
                                        rotation2=set_mat1, translation2=external_tx1)
        specific_transformation2 = dict(rotation=full_rotation2[idx], translation=internal_tx_param2,
                                        rotation2=set_mat2, translation2=external_tx2)
        specific_transformations = [specific_transformation1, specific_transformation2]

        # Transform each starting coords to the candidate pose coords then update the Pose coords
        new_coords = []
        for entity_idx, entity in enumerate(pose.entities):
            new_coords.append(transform_coordinate_sets(entity_start_coords[entity_idx],
                                                        **specific_transformations[transform_indices[entity_idx]]))
        pose.coords = np.concatenate(new_coords)

        logger.debug(f'\tCopy and Transform Oligomer1 and Oligomer2 (took {time.time() - copy_model_start:8f}s)')

    def find_viable_symmetric_indices(viable_pose_indices: list[int]) -> np.ndarray:
        """Using the nonlocal Pose and transformation indices, check each transformation index for symmetric viability

        Args:
            viable_pose_indices: The indices from the transform array to test for clashes
        Returns:
            An array with the transformation indices that passed clash testing
        """
        # Assume the pose will fail the clash test (0), otherwise, (1) for passing
        _passing_symmetric_clashes = [0 for _ in range(len(viable_pose_indices))]
        for result_idx, transform_idx in enumerate(viable_pose_indices):
            # Find the pose
            update_pose_coords(transform_idx)
            if not pose.symmetric_assembly_is_clash(measure=job.design.clash_criteria,
                                                    distance=job.design.clash_distance):
                _passing_symmetric_clashes[result_idx] = 1

        return np.flatnonzero(_passing_symmetric_clashes)

    # Make the indices into an array
    interface_is_viable = np.array(interface_is_viable, dtype=int)

    # Update the passing_transforms
    # passing_transforms contains all the transformations that are still passing
    # index the previously passing indices (sufficiently_dense_indices) and (asu_is_viable_indices)
    # by new passing indices (interface_is_viable)
    # and set each of these indices to 1 (True)
    # passing_transforms[sufficiently_dense_indices[asu_is_viable_indices[interface_is_viable]]] = 1
    # # Remove non-viable transforms from the original transformation parameters by indexing interface_is_viable
    # passing_transforms_indices = np.flatnonzero(passing_transforms)
    # # filter_transforms_by_indices(passing_transforms_indices)
    passing_transforms_indices = sufficiently_dense_indices[asu_is_viable_indices[interface_is_viable]]

    if job.design.ignore_symmetric_clashes:
        logger.warning(f'Not checking for symmetric clashes per requested flag '
                       f'{flags.format_args(flags.ignore_symmetric_clashes_args)}')
        passing_symmetric_clash_indices_perturb = slice(None)
    else:
        logger.info('Checking solutions for symmetric clashes')

        # passing_symmetric_clash_indices = find_viable_symmetric_indices(number_viable_pose_interfaces)
        passing_symmetric_clash_indices = find_viable_symmetric_indices(passing_transforms_indices.tolist())
        number_passing_symmetric_clashes = len(passing_symmetric_clash_indices)
        logger.info(f'After symmetric clash testing, found {number_passing_symmetric_clashes} viable poses')

        if number_passing_symmetric_clashes == 0:  # There were no successful transforms
            logger.warning(f'No viable poses without symmetric clashes. Terminating {building_blocks} docking')
            return []
        # ------------------ TERMINATE DOCKING ------------------------
        # Update the passing_transforms
        # passing_transforms contains all the transformations that are still passing
        # index the previously passing indices (sufficiently_dense_indices)
        # and (asu_is_viable_indices) and (interface_is_viable)
        # by new passing indices (passing_symmetric_clash_indices)
        # and set each of these indices to 1 (True)
        # passing_transforms_indices = \
        #     sufficiently_dense_indices[asu_is_viable_indices[interface_is_viable[passing_symmetric_clash_indices]]]
        passing_transforms_indices = passing_transforms_indices[passing_symmetric_clash_indices]
        # Todo could this be used?
        # passing_transforms[passing_transforms_indices] = 1

    # Remove non-viable transforms from the original transformations due to clashing
    filter_transforms_by_indices(passing_transforms_indices)
    number_of_transforms = len(passing_transforms_indices)
    # Clean memory
    del passing_transforms_indices, sufficiently_dense_indices, passing_symmetric_clash_indices
    del asu_is_viable_indices, interface_is_viable

    # # all_passing_ghost_indices = [all_passing_ghost_indices[idx] for idx in passing_symmetric_clash_indices.tolist()]
    # # all_passing_surf_indices = [all_passing_surf_indices[idx] for idx in passing_symmetric_clash_indices.tolist()]
    # # all_passing_z_scores = [all_passing_z_scores[idx] for idx in passing_symmetric_clash_indices.tolist()]

    if sym_entry.unit_cell:
        # Calculate the vectorized uc_dimensions
        full_uc_dimensions = sym_entry.get_uc_dimensions(full_optimal_ext_dof_shifts)

    # Calculate metrics on input Pose before any manipulation
    pose_length = pose.number_of_residues
    residue_indices = list(range(pose_length))

    def add_fragments_to_pose():
        """Add observed fragments to the Pose or generate new observations given the Pose state

        If no arguments are passed, the fragment observations will be generated new
        """
        # First, clear any pose information and force identification of the interface
        pose._interface_residue_indices_by_interface = {}
        pose.find_and_split_interface(by_distance=True, distance=cb_distance)

        # # Next, set the interface fragment info for gathering of interface metrics
        # if overlap_ghosts is None or overlap_surf is None or sorted_z_scores is None:
        # Remove old fragments
        pose._fragment_info_by_entity_pair = {}
        # Query fragments
        pose.generate_interface_fragments()

    # Load evolutionary profiles of interest for optimization/analysis
    if job.use_evolution:
        measure_evolution, measure_alignment = load_evolutionary_profile(job.api_db, pose)

        evolutionary_profile_array = pssm_as_array(pose.evolutionary_profile)
        with catch_warnings():
            simplefilter('ignore', category=RuntimeWarning)
            # Divide by zero encountered in log
            corrected_log_evolutionary_profile = np.nan_to_num(
                np.log(evolutionary_profile_array), copy=False, nan=np.nan,
                neginf=metrics.zero_probability_evol_value)
        batch_evolutionary_profile = \
            torch.from_numpy(np.tile(evolutionary_profile_array, (batch_length, 1, 1)))
    else:  # Make an empty collapse_profile
        # pose.add_profile(null=True)  # <- Actually, don't use, keep pose.evolutionary_profile == {}
        measure_evolution = measure_alignment = False
        collapse_profile = np.empty(0)
        evolutionary_profile_array = corrected_log_evolutionary_profile = None

    # Calculate hydrophobic collapse for each dock using the collapse_profile if it was calculated
    if measure_evolution:
        hydrophobicity = 'expanded'
    else:
        hydrophobicity = 'standard'
    contact_order_per_res_z, reference_collapse, collapse_profile = \
        pose.get_folding_metrics(hydrophobicity=hydrophobicity)
    if measure_evolution:  # collapse_profile.size:  # Not equal to zero, use the profile instead
        reference_collapse = collapse_profile

    # Todo
    #  enable precise metric acquisition
    # def collect_dock_metrics(score_functions: dict[str, Callable]) -> dict[str, np.ndarray]:
    #     """Perform analysis on the docked Pose instances"""
    #     pose_functions = {}
    #     residue_functions = {}
    #     for score, function in score_functions:
    #         if getattr(sql.PoseMetrics, score, None):
    #             pose_functions[score] = function
    #         else:
    #             residue_functions[score] = function
    #
    #     pose_metrics = []
    #     per_residue_metrics = []
    #     for idx in range(number_of_transforms):
    #         # Add the next set of coordinates
    #         update_pose_coords(idx)
    #
    #         # if number_perturbations_applied > 1:
    #         add_fragments_to_pose()
    #
    #         pose_metrics.append({score: function(pose) for score, function in pose_functions})
    #         per_residue_metrics.append({score: function(pose) for score, function in residue_functions})
    #
    #         # Reset the fragment_map and fragment_profile for each Entity before calculate_fragment_profile
    #         for entity in pose.entities:
    #             entity.fragment_map = None
    #             # entity.alpha.clear()
    #
    #         # Load fragment_profile (and fragment_metrics) into the analysis
    #         pose.calculate_fragment_profile()
    #         # This could be an empty array if no fragments were found
    #         fragment_profile_array = pose.fragment_profile.as_array()
    #         with catch_warnings():
    #             simplefilter('ignore', category=RuntimeWarning)
    #             # np.log causes -inf at 0, thus we correct these to a 'large' number
    #             corrected_frag_array = np.nan_to_num(np.log(fragment_profile_array), copy=False,
    #                                                  nan=np.nan, neginf=metrics.zero_probability_frag_value)
    #         per_residue_fragment_profile_loss = \
    #             resources.ml.sequence_nllloss(torch_numeric_sequence, torch.from_numpy(corrected_frag_array))
    #
    #         # Remove saved pose attributes from the prior iteration calculations
    #         pose.ss_sequence_indices.clear(), pose.ss_type_sequence.clear()
    #         pose.fragment_metrics.clear()
    #         for attribute in ['_design_residues', '_interface_residues']:  # _assembly_minimally_contacting
    #             try:
    #                 delattr(pose, attribute)
    #             except AttributeError:
    #                 pass
    #
    #         # Save pose metrics
    #         # pose_metrics[pose_id] = {
    #         pose_metrics.append({
    #             **pose.calculate_metrics(),  # Also calculates entity.metrics
    #             'dock_collapse_violation': collapse_violation[idx],
    #         })

    # def format_docking_metrics(metrics_: dict[str, np.ndarray]) -> tuple[pd.DataFrame, pd.DataFrame]:
    #     """From the current pool of docked poses and their collected metrics, format the metrics for selection/output
    #
    #     Args:
    #         metrics_: A dictionary of metric name to metric value where the values are per-residue measurements the
    #             length of the active transformation pool
    #     Returns:
    #         A tuple of DataFrames representing the per-pose and the per-residue metrics. Each has indices from 0-N
    #     """
    idx_slice = pd.IndexSlice

    def collect_dock_metrics(proteinmpnn_score: bool = False) -> tuple[pd.DataFrame, pd.DataFrame]:  # -> dict[str,
        # np.ndarray]:
        """Perform analysis on the docked Pose instances

        Args:
            proteinmpnn_score: Whether proteinmpnn scores should be collected
        Returns:
            A tuple of DataFrames representing the per-pose and the per-residue metrics. Each has indices from 0-N
        """
        logger.info(f'Collecting metrics for {number_of_transforms} active Poses')
        # Remove old DataFrames to save memory. These are going to be calculated fresh
        nonlocal poses_df, residues_df
        poses_df = residues_df = pd.DataFrame()

        # nan_blank_data = list(repeat(np.nan, pose_length))
        # unbound_errat = []
        # for idx, entity in enumerate(pose.entities):
        #     _, oligomeric_errat = entity.assembly.errat(out_path=os.path.devnull)
        #     unbound_errat.append(oligomeric_errat[:entity.number_of_residues])

        torch_numeric_sequence = torch.from_numpy(pose.sequence_numeric)
        if evolutionary_profile_array is None:
            profile_loss = {}
        else:
            torch_log_evolutionary_profile = torch.from_numpy(corrected_log_evolutionary_profile)
            per_residue_evolutionary_profile_loss = \
                resources.ml.sequence_nllloss(torch_numeric_sequence, torch_log_evolutionary_profile)
            profile_loss = {
                # 'sequence_loss_design': per_residue_design_profile_loss,
                'sequence_loss_evolution': per_residue_evolutionary_profile_loss,
            }

        sequence_params = {
            **pose.per_residue_contact_order(),
            # 'errat_deviation': np.concatenate(unbound_errat),
            'type': tuple(pose.sequence),
            **profile_loss
            # Todo 1 each pose...
            #  'sequence_loss_fragment': per_residue_fragment_profile_loss
        }

        if proteinmpnn_score:
            # Initialize and retrieve the ProteinMPNN model for dock analysis
            mpnn_model = ml.proteinmpnn_factory(ca_only=job.design.ca_only, model_name=job.design.proteinmpnn_model)
            # Set up model sampling type based on symmetry
            if pose.is_symmetric():
                number_of_residues = pose.number_of_symmetric_residues
            else:
                number_of_residues = pose_length

            # Modulate memory requirements
            # calculation_size = len(full_rotation1)  # This is the number of transformations
            # The batch_length indicates how many models could fit in the allocated memory
            batch_length = ml.calculate_proteinmpnn_batch_length(mpnn_model, number_of_residues)
            logger.info(f'Found ProteinMPNN batch_length={batch_length}')

            # Set up parameters to run ProteinMPNN design
            if job.design.ca_only:
                coords_type = 'ca_coords'
                num_model_residues = 1
            else:
                coords_type = 'backbone_coords'
                num_model_residues = 4

            # Set up Pose parameters
            parameters = pose.get_proteinmpnn_params(ca_only=job.design.ca_only,
                                                     interface=measure_interface_during_dock)
            # Todo 2 reinstate if conditional_log_probs
            # # Todo
            # #  Must calculate randn individually if using some feature to describe order
            # parameters['randn'] = pose.generate_proteinmpnn_decode_order()  # to_device=device)

            # Set up interface unbound coordinates
            mpnn_null_idx = resources.ml.MPNN_NULL_IDX
            if measure_interface_during_dock:
                X_unbound = pose.get_proteinmpnn_unbound_coords(ca_only=job.design.ca_only)
                unbound_batch = \
                    ml.setup_pose_batch_for_proteinmpnn(1, mpnn_model.device, X_unbound=X_unbound,
                                                        mask=parameters['mask'], residue_idx=parameters['residue_idx'],
                                                        chain_encoding=parameters['chain_encoding'])
                with torch.no_grad():
                    unconditional_log_probs_unbound = \
                        mpnn_model.unconditional_probs(unbound_batch['X_unbound'], unbound_batch['mask'],
                                                       unbound_batch['residue_idx'],
                                                       unbound_batch['chain_encoding']).cpu()
                    asu_unconditional_softmax_seq_unbound = \
                        np.exp(unconditional_log_probs_unbound[:, :pose_length, :mpnn_null_idx])
                # Remove any unnecessary reserved memory
                del unbound_batch
            else:
                raise NotImplementedError(
                    f"{fragment_dock.__name__} isn't written to only measure the complex state")
                asu_unconditional_softmax_seq_unbound = None
            # Disregard X, chain_M_pos, and bias_by_res parameters return and use the pose specific data from below
            # parameters.pop('X')  # overwritten by X_unbound
            parameters.pop('chain_M_pos')
            parameters.pop('bias_by_res')
            # tied_pos = parameters.pop('tied_pos')
            # # Todo 2 if modifying the amount of weight given to each of the copies
            # tied_beta = parameters.pop('tied_beta')
            # # Set the design temperature
            # temperature = job.design.temperatures[0]

            batch_parameters = ml.setup_pose_batch_for_proteinmpnn(batch_length, mpnn_model.device, **parameters)
            mask = batch_parameters['mask']
            residue_idx = batch_parameters['residue_idx']
            chain_encoding = batch_parameters['chain_encoding']

            def proteinmpnn_score_batched_coords(batched_coords: list[np.ndarray]) -> list[dict[str, np.ndarray]]:
                """"""
                actual_batch_length = len(batched_coords)
                if actual_batch_length != batch_length:
                    # if not actual_batch_length:
                    #     return []
                    _mask = mask[:actual_batch_length]
                    _residue_idx = residue_idx[:actual_batch_length]
                    _chain_encoding = chain_encoding[:actual_batch_length]
                else:
                    _mask = mask[:actual_batch_length]
                    _residue_idx = residue_idx[:actual_batch_length]
                    _chain_encoding = chain_encoding[:actual_batch_length]

                # Format the bb coords for ProteinMPNN
                if pose.is_symmetric():
                    # Make each set of coordinates symmetric
                    # Lattice cases have .uc_dimensions set in update_pose_coords()
                    perturbed_bb_coords = np.concatenate(
                        [pose.return_symmetric_coords(coords_) for coords_ in batched_coords])

                    # Todo 2 reinstate if conditional_log_probs
                    # # Symmetrize other arrays
                    # number_of_symmetry_mates = pose.number_of_symmetry_mates
                    # # (batch, number_of_sym_residues, ...)
                    # residue_mask_cpu = np.tile(residue_mask_cpu, (1, number_of_symmetry_mates))
                    # # bias_by_res = np.tile(bias_by_res, (1, number_of_symmetry_mates, 1))
                else:
                    # When batched_coords are individually transformed, axis=0 works
                    perturbed_bb_coords = np.concatenate(batched_coords, axis=0)

                # Reshape for ProteinMPNN
                # Let -1 fill in the pose length dimension with the number of residues
                # 4 is shape of backbone coords (N, Ca, C, O), 3 is x,y,z
                # logger.debug(f'perturbed_bb_coords.shape: {perturbed_bb_coords.shape}')
                X = perturbed_bb_coords.reshape((actual_batch_length, -1, num_model_residues, 3))
                # logger.debug(f'X.shape: {X.shape}')

                # Start a unit of work
                #  Taking the KL divergence would indicate how divergent the interfaces are from the
                #  surface. This should be simultaneously minimized (i.e. the lowest evolutionary divergence)
                #  while the aa frequency distribution cross_entropy compared to the fragment profile is
                #  minimized
                # -------------------------------------------
                with torch.no_grad():
                    X = torch.from_numpy(X).to(dtype=torch.float32, device=mpnn_model.device)
                    unconditional_log_probs = \
                        mpnn_model.unconditional_probs(X, _mask, _residue_idx, _chain_encoding).cpu()
                    # Use the sequence as an unknown token then guess the probabilities given the remaining
                    # information, i.e. the sequence and the backbone
                    # Calculations with this are done using cpu memory and numpy
                    # Todo 2 reinstate if conditional_log_probs
                    # S_design_null[residue_mask.type(torch.bool)] = mpnn_null_idx
                    # chain_residue_mask = chain_mask * residue_mask * mask
                    # decoding_order = \
                    #     ml.create_decoding_order(randn, chain_residue_mask, tied_pos=tied_pos, to_device=device)
                    # conditional_log_probs_null_seq = \
                    #     mpnn_model(X, S_design_null, mask, chain_residue_mask, residue_idx, chain_encoding,
                    #                None,  # This argument is provided but with below args, is not used
                    #                use_input_decoding_order=True, decoding_order=decoding_order).cpu()
                    # asu_conditional_softmax_null_seq = \
                    #     np.exp(conditional_log_probs_null_seq[:, :pose_length, :mpnn_null_idx])

                # Remove the gaps index from the softmax input with :mpnn_null_idx]
                asu_unconditional_softmax_seq = \
                    np.exp(unconditional_log_probs[:, :pose_length, :mpnn_null_idx])
                # asu_unconditional_softmax_seq
                # tensor([[[0.0273, 0.0125, 0.0200,  ..., 0.0073, 0.0102, 0.0052],
                #          ...,
                #          [0.0091, 0.0078, 0.0101,  ..., 0.0038, 0.0029, 0.0059]],
                #          ...
                #         [[0.0273, 0.0125, 0.0200,  ..., 0.0073, 0.0102, 0.0052],
                #          ...,
                #          [0.0091, 0.0078, 0.0101,  ..., 0.0038, 0.0029, 0.0059]]])
                per_residue_dock_cross_entropy = \
                    metrics.cross_entropy(asu_unconditional_softmax_seq,
                                          asu_unconditional_softmax_seq_unbound[:actual_batch_length],
                                          per_entry=True)

                # Set up per_residue metrics
                # All have the shape (this batch length, pose.number_of_residues)
                # Set up the interface indices where interface residues are 1, others are 0
                per_residue_design_indices = np.zeros((actual_batch_length, pose_length), dtype=np.int32)
                for chunk_idx, interface_residues in enumerate(interface_mask):
                    per_residue_design_indices[chunk_idx, interface_residues] = 1

                # Set up various profiles for cross entropy against the softmax(complexed ProteinMPNN logits)
                if pose.fragment_profile:
                    # Process the fragment_profiles into an array for cross entropy
                    fragment_profile_array = np.nan_to_num(np.array(fragment_profiles), copy=False, nan=np.nan)
                    # RuntimeWarning: divide by zero encountered in log
                    # np.log causes -inf at 0, thus we need to correct these to a very large number
                    batch_fragment_profile = torch.from_numpy(fragment_profile_array)
                    per_residue_fragment_cross_entropy = \
                        metrics.cross_entropy(asu_unconditional_softmax_seq,
                                              batch_fragment_profile,
                                              per_entry=True)
                    # per_residue_fragment_cross_entropy
                    # [[-3.0685883 -3.575249  -2.967545  ... -3.3111317 -3.1204746 -3.1201541]
                    #  [-3.0685873 -3.5752504 -2.9675443 ... -3.3111336 -3.1204753 -3.1201541]
                    #  [-3.0685952 -3.575687  -2.9675474 ... -3.3111277 -3.1428783 -3.1201544]]
                else:  # Populate with null data
                    per_residue_fragment_cross_entropy = np.empty_like(per_residue_design_indices, dtype=np.float32)
                    per_residue_fragment_cross_entropy[:] = np.nan

                if pose.evolutionary_profile:
                    per_residue_evolution_cross_entropy = \
                        metrics.cross_entropy(asu_unconditional_softmax_seq,
                                              batch_evolutionary_profile[:actual_batch_length],
                                              per_entry=True)
                else:  # Populate with null data
                    per_residue_evolution_cross_entropy = np.empty_like(per_residue_fragment_cross_entropy)
                    per_residue_evolution_cross_entropy[:] = np.nan

                if pose.profile:
                    # Process the design_profiles into an array for cross entropy
                    with catch_warnings():
                        # Divide by zero encountered in log
                        simplefilter('ignore', category=RuntimeWarning)
                        corrected_log_design_profile = np.nan_to_num(
                            np.log(np.array(design_profiles)), copy=False, nan=np.nan,
                            neginf=metrics.zero_probability_evol_value)
                    batch_design_profile = torch.from_numpy(corrected_log_design_profile)
                    per_residue_design_cross_entropy = \
                        metrics.cross_entropy(asu_unconditional_softmax_seq,
                                              batch_design_profile,
                                              per_entry=True)
                else:  # Populate with null data
                    per_residue_design_cross_entropy = np.empty_like(per_residue_fragment_cross_entropy)
                    per_residue_design_cross_entropy[:] = np.nan

                # Convert to axis=0 list's for below indexing
                per_residue_design_indices = list(per_residue_design_indices)
                per_residue_dock_cross_entropy = list(per_residue_dock_cross_entropy)
                per_residue_design_cross_entropy = list(per_residue_design_cross_entropy)
                per_residue_evolution_cross_entropy = list(per_residue_evolution_cross_entropy)
                per_residue_fragment_cross_entropy = list(per_residue_fragment_cross_entropy)
                _per_residue_data_batched = []
                for idx in range(actual_batch_length):
                    _per_residue_data_batched.append({
                        # This is required to save the interface_residues
                        'interface_residue': per_residue_design_indices[idx],
                        'proteinmpnn_dock_cross_entropy_loss': per_residue_dock_cross_entropy[idx],
                        'proteinmpnn_v_design_probability_cross_entropy_loss':
                            per_residue_design_cross_entropy[idx],
                        'proteinmpnn_v_evolution_probability_cross_entropy_loss':
                            per_residue_evolution_cross_entropy[idx],
                        'proteinmpnn_v_fragment_probability_cross_entropy_loss':
                            per_residue_fragment_cross_entropy[idx],
                    })

                if collapse_profile.size:  # Not equal to zero
                    # Include new axis for the sequence iteration to work on an array v
                    collapse_by_pose = \
                        metrics.collapse_per_residue(asu_unconditional_softmax_seq[:, None],
                                                     contact_order_per_res_z, reference_collapse,
                                                     alphabet_type=protein_letters_alph1,
                                                     hydrophobicity='expanded')
                    for _data_batched, collapse_metrics in zip(_per_residue_data_batched, collapse_by_pose):
                        _data_batched.update(collapse_metrics)

                return _per_residue_data_batched
        else:
            batch_parameters = {}
            mask = residue_idx = chain_encoding = None

        # Initialize pose data
        pose_metrics = []
        per_residue_data = []
        pose_ids = list(range(number_of_transforms))
        # ProteinMPNN
        batch_idx = 0
        # pose_metrics_batched = []
        per_residue_data_batched = []
        design_profiles = []
        fragment_profiles = []
        interface_mask = []
        # Stack the entity coordinates to make up a contiguous block for each pose
        new_coords = []
        # Get metrics for each Pose
        for idx in tqdm(pose_ids, bar_format=TQDM_BAR_FORMAT):
            # logger.info(f'Metrics for Pose {idx + 1}/{number_of_transforms}')
            # Add the next set of coordinates
            update_pose_coords(idx)

            # if number_perturbations_applied > 1:
            add_fragments_to_pose()

            # Reset the fragment_map and fragment_profile for each Entity before calculate_fragment_profile
            for entity in pose.entities:
                entity.fragment_map = None
                # entity.alpha.clear()

            # Load fragment_profile (and fragment_metrics) into the analysis
            pose.calculate_fragment_profile()
            # This could be an empty array if no fragments were found
            fragment_profile_array = pose.fragment_profile.as_array()
            with catch_warnings():
                simplefilter('ignore', category=RuntimeWarning)
                # np.log causes -inf at 0, so correct these to a "large" number
                corrected_frag_array = np.nan_to_num(np.log(fragment_profile_array), copy=False,
                                                     nan=np.nan, neginf=metrics.zero_probability_frag_value)
            per_residue_fragment_profile_loss = \
                resources.ml.sequence_nllloss(torch_numeric_sequence, torch.from_numpy(corrected_frag_array))
            # per_residue_data[pose_id] = {
            per_residue_data.append({
                **sequence_params,
                'sequence_loss_fragment': per_residue_fragment_profile_loss
            })

            # Remove saved pose attributes from the prior iteration calculations
            pose.ss_sequence_indices.clear(), pose.ss_type_sequence.clear()
            for attribute in ['_design_residues', '_interface_residues']:  # _assembly_minimally_contacting
                try:
                    delattr(pose, attribute)
                except AttributeError:
                    pass

            # Save pose metrics
            pose_metrics.append(pose.calculate_metrics())

            if proteinmpnn_score:
                # Save profiles
                fragment_profiles.append(pose.fragment_profile.as_array())
                if measure_evolution:
                    pose.calculate_profile()
                    design_profiles.append(pssm_as_array(pose.profile))

                # Add all interface residues
                # if measure_interface_during_dock:  # job.design.interface:
                design_residues = []
                for number, residues in pose.interface_residues_by_interface_unique.items():
                    design_residues.extend([residue.index for residue in residues])
                # else:
                #     design_residues = list(range(pose_length))
                interface_mask.append(design_residues)
                # Set coords
                new_coords.append(getattr(pose, coords_type))

                batch_idx += 1
                # If the current iteration marks a batch"-sized" unit of work, execute it
                if batch_idx == batch_length:  # or idx + 1 == number_of_transforms:
                    per_residue_data_batched.extend(proteinmpnn_score_batched_coords(new_coords))

                    # Set batch containers to zero for the next iteration
                    batch_idx = 0
                    design_profiles = []
                    fragment_profiles = []
                    interface_mask = []
                    new_coords = []

        if proteinmpnn_score:
            # Finish the routine with any remaining proteinmpnn calculations adding last batched dataset from
            # proteinmpnn_score_batched_coords()
            if new_coords:
                per_residue_data_batched.extend(proteinmpnn_score_batched_coords(new_coords))
            # Consolidate the iterative and batched data
            for data, batched_data in zip(per_residue_data, per_residue_data_batched):
                data.update(batched_data)
            # for data, batched_data in zip(pose_metrics, pose_metrics_batched):
            #     data.update(batched_data)

        # Construct the main DataFrames, poses_df and residues_df
        poses_df = pd.DataFrame.from_dict(dict(zip(pose_ids, pose_metrics)), orient='index')
        residues_df = pd.concat({pose_id: pd.DataFrame(data, index=residue_indices)
                                 for pose_id, data in zip(pose_ids, per_residue_data)}) \
            .unstack().swaplevel(0, 1, axis=1)

        # Set up column renaming
        # if proteinmpnn_score:
        #     per_res_columns = [
        #         'proteinmpnn_v_design_probability_cross_entropy_loss',
        #         'proteinmpnn_v_evolution_probability_cross_entropy_loss'
        #     ]
        #     mean_columns = [
        #         'proteinmpnn_v_design_probability_cross_entropy_per_residue',
        #         'proteinmpnn_v_evolution_probability_cross_entropy_per_residue'
        #     ]
        #     _rename = dict(zip(per_res_columns, mean_columns))
        if proteinmpnn_score and collapse_profile.size:
            # collapse_profile required
            collapse_metrics = (
                'collapse_deviation_magnitude',
                'collapse_increase_significance_by_contact_order_z',
                'collapse_increased_z',
                'collapse_new_positions',
                'collapse_new_position_significance',
                'collapse_significance_by_contact_order_z',
                'collapse_sequential_peaks_z',
                'collapse_sequential_z',
                'hydrophobic_collapse')
            unique_columns = residues_df.columns.unique(level=-1)
            _columns = unique_columns.tolist()
            remap_columns = dict(zip(_columns, _columns))
            remap_columns.update(dict(zip(collapse_metrics, (f'dock_{metric_}' for metric_ in collapse_metrics))))
            residues_df.columns = residues_df.columns.set_levels(unique_columns.map(remap_columns), level=-1)
            # 'dock' metrics aren't included by default
            per_res_columns = ['dock_hydrophobic_collapse', 'dock_collapse_deviation_magnitude']
            mean_columns = ['dock_hydrophobicity', 'dock_collapse_variance']
            _rename = dict(zip(per_res_columns, mean_columns))
        else:
            mean_columns = []
            _rename = {}

        # Calculate new metrics from combinations of other metrics
        # Add summed residue information to poses_df
        summed_poses_df = metrics.sum_per_residue_metrics(
            residues_df, rename_columns=_rename, mean_metrics=mean_columns)
        # # Need to remove sequence as it is in pose.calculate_metrics()
        # poses_df = poses_df.join(summed_poses_df.drop('sequence', axis=1))
        if proteinmpnn_score:
            poses_df = poses_df.join(summed_poses_df.drop('number_residues_interface', axis=1))
            # .droplevel(-1, axis=1) operations are REQUIRED here or the calculations are messed up
            interface_df = residues_df.loc[:, idx_slice[:, 'interface_residue']].droplevel(-1, axis=1)
            # number_interface_residues_s = interface_df.sum(axis=1)
            number_interface_residues_s = poses_df['number_residues_interface']
            # Update the total loss according to those residues that were actually specified as designable
            poses_df['proteinmpnn_dock_cross_entropy_per_residue'] = \
                (residues_df.loc[:, idx_slice[:, 'proteinmpnn_dock_cross_entropy_loss']].droplevel(-1, axis=1)
                 * interface_df).sum(axis=1)
            poses_df['proteinmpnn_dock_cross_entropy_per_residue'] /= number_interface_residues_s
            poses_df['proteinmpnn_v_design_probability_cross_entropy_per_residue'] = \
                (residues_df.loc[:, idx_slice[:, 'proteinmpnn_v_design_probability_cross_entropy_loss']]
                 .droplevel(-1, axis=1) * interface_df).sum(axis=1)
            poses_df['proteinmpnn_v_design_probability_cross_entropy_per_residue'] /= number_interface_residues_s
            poses_df['proteinmpnn_v_evolution_probability_cross_entropy_per_residue'] = \
                (residues_df.loc[:, idx_slice[:, 'proteinmpnn_v_evolution_probability_cross_entropy_loss']]
                 .droplevel(-1, axis=1) * interface_df).sum(axis=1)
            poses_df['proteinmpnn_v_evolution_probability_cross_entropy_per_residue'] /= number_interface_residues_s
            # poses_df['proteinmpnn_v_fragment_probability_cross_entropy_per_residue'] = \
            #     (residues_df.loc[:, idx_slice[:, 'proteinmpnn_v_fragment_probability_cross_entropy_loss']]
            #      .droplevel(-1, axis=1) * interface_df).sum(axis=1)
            # Update the per_residue loss according to fragment residues involved in the scoring
            poses_df['proteinmpnn_v_fragment_probability_cross_entropy_per_residue'] = \
                poses_df['proteinmpnn_v_fragment_probability_cross_entropy_loss'] \
                / poses_df['number_residues_interface_fragment_total']

            if collapse_profile.size:
                # Check if there are new collapse islands and count
                poses_df['dock_collapse_new_positions'] = \
                    (residues_df.loc[:, idx_slice[:, 'dock_collapse_new_positions']].droplevel(-1, axis=1)
                     * interface_df).sum(axis=1)
                # If there are any dock_collapse_new_positions there is a collapse violation
                poses_df['dock_collapse_violation'] = poses_df['dock_collapse_new_positions'] > 0

                poses_df['dock_collapse_significance_by_contact_order_z_mean'] = \
                    poses_df['dock_collapse_significance_by_contact_order_z'] / \
                    (residues_df.loc[:, idx_slice[:, 'dock_collapse_significance_by_contact_order_z']] != 0) \
                    .sum(axis=1)
                # if measure_alignment:
                dock_collapse_increased_df = residues_df.loc[:, idx_slice[:, 'dock_collapse_increased_z']]
                total_increased_collapse = (dock_collapse_increased_df != 0).sum(axis=1)
                poses_df['dock_collapse_increased_z_mean'] = \
                    dock_collapse_increased_df.sum(axis=1) / total_increased_collapse
                poses_df['dock_collapse_sequential_peaks_z_mean'] = \
                    poses_df['dock_collapse_sequential_peaks_z'] / total_increased_collapse
                poses_df['dock_collapse_sequential_z_mean'] = \
                    poses_df['dock_collapse_sequential_z'] / total_increased_collapse
        else:
            poses_df = poses_df.join(summed_poses_df)

        # Finally add the precalculated pose_thermophilicity for completeness
        poses_df['pose_thermophilicity'] = pose_thermophilicity
        # logger.debug(f'Found poses_df with columns: {poses_df.columns.tolist()}')
        # logger.debug(f'Found poses_df with index: {poses_df.index.tolist()}')

        return poses_df, residues_df

    def perturb_transformations() -> tuple[np.ndarray, list[int], int]:
        """From existing transformation parameters, sample parameters within a range of spatial perturbation

        Returns:
            A tuple consisting of the elements (
            transformation hash - Integer mapping the possible 3D space for docking to each perturbed transformation,
            size of each perturbation cluster - Number of perturbed transformations possible from starting transform,
            degrees of freedom sampled - How many degrees of freedom were perturbed
            )
        """
        logger.info(f'Perturbing transformations')
        perturb_rotation1, perturb_rotation2, perturb_int_tx1, perturb_int_tx2, perturb_optimal_ext_dof_shifts = \
            [], [], [], [], []

        # Define a function to stack the transforms
        def stack_viable_transforms(passing_indices: np.ndarray | list[int]):
            """From indices with viable transformations, stack the corresponding transformations into full
            perturbation transformations

            Args:
                passing_indices: The indices that should be selected from the full transformation sets
            """
            # nonlocal perturb_rotation1, perturb_rotation2, perturb_int_tx1, perturb_int_tx2
            logger.debug(f'Perturb expansion found {len(passing_indices)} passing_perturbations')
            perturb_rotation1.append(full_rotation1[passing_indices])
            perturb_rotation2.append(full_rotation2[passing_indices])
            if sym_entry.is_internal_tx1:
                perturb_int_tx1.extend(full_int_tx1[passing_indices, -1])
            if sym_entry.is_internal_tx2:
                perturb_int_tx2.extend(full_int_tx2[passing_indices, -1])

            if sym_entry.unit_cell:
                nonlocal full_optimal_ext_dof_shifts  # , full_ext_tx1, full_ext_tx2
                perturb_optimal_ext_dof_shifts.append(full_optimal_ext_dof_shifts[passing_indices])
                # full_uc_dimensions = full_uc_dimensions[passing_indices]
                # full_ext_tx1 = full_ext_tx1[passing_indices]
                # full_ext_tx2 = full_ext_tx2[passing_indices]

        # Expand successful poses from coarse search of transformational space to randomly perturbed offset
        # By perturbing the transformation a random small amount, we generate transformational diversity from
        # the already identified solutions.
        perturbations, n_perturbed_dof = \
            create_perturbation_transformations(sym_entry, number_of_rotations=job.dock.perturb_dof_steps_rot,
                                                number_of_translations=job.dock.perturb_dof_steps_tx,
                                                rotation_steps=rotation_steps,
                                                translation_steps=translation_perturb_steps)
        # Extract perturbation parameters and set the original transformation parameters to a new variable
        nonlocal number_perturbations_applied
        rotation_perturbations1 = perturbations['rotation1']
        # Compute the length of each perturbation to separate into unique perturbation spaces
        number_perturbations_applied = calculation_size_ = len(rotation_perturbations1)
        # logger.debug(f'rotation_perturbations1.shape: {rotation_perturbations1.shape}')
        # logger.debug(f'rotation_perturbations1[:5]: {rotation_perturbations1[:5]}')
        batch_length_ = get_check_tree_for_query_overlap_batch_length(bb_cb_coords2)
        batch_length_ = min((batch_length_, number_perturbations_applied))

        # Define local check_tree_for_query_overlap function to check clashes
        @resources.ml.batch_calculation(size=calculation_size_, batch_length=batch_length_, setup=np_tile_wrap,
                                        compute_failure_exceptions=(np.core._exceptions._ArrayMemoryError,))
        def perturb_check_tree_for_query_overlap(*args, **kwargs):
            return check_tree_for_query_overlap(*args, **kwargs)

        nonlocal number_of_transforms, full_rotation1, full_rotation2
        # if sym_entry.is_internal_rot1:  # Todo 2
        original_rotation1 = full_rotation1
        # if sym_entry.is_internal_rot2:  # Todo 2
        original_rotation2 = full_rotation2
        rotation_perturbations2 = perturbations['rotation2']
        # logger.debug(f'rotation_perturbations2.shape: {rotation_perturbations2.shape}')
        # logger.debug(f'rotation_perturbations2[:5]: {rotation_perturbations2[:5]}')
        # blank_parameter = list(repeat([None, None, None], number_of_transforms))
        if sym_entry.is_internal_tx1:
            nonlocal full_int_tx1
            original_int_tx1 = full_int_tx1
            translation_perturbations1 = perturbations['translation1']
            # logger.debug(f'translation_perturbations1.shape: {translation_perturbations1.shape}')
            # logger.debug(f'translation_perturbations1[:5]: {translation_perturbations1[:5]}')
        # else:
        #     translation_perturbations1 = blank_parameter

        if sym_entry.is_internal_tx2:
            nonlocal full_int_tx2
            original_int_tx2 = full_int_tx2
            translation_perturbations2 = perturbations['translation2']
            # logger.debug(f'translation_perturbations2.shape: {translation_perturbations2.shape}')
            # logger.debug(f'translation_perturbations2[:5]: {translation_perturbations2[:5]}')
        # else:
        #     translation_perturbations2 = blank_parameter

        if sym_entry.unit_cell:
            nonlocal full_optimal_ext_dof_shifts
            nonlocal full_ext_tx1, full_ext_tx2
            ext_dof_perturbations = perturbations['external_translations']
            original_optimal_ext_dof_shifts = full_optimal_ext_dof_shifts
            # original_ext_tx1 = full_ext_tx1
            # original_ext_tx2 = full_ext_tx2
            external_dof1, external_dof2, *_ = sym_entry.external_dofs
        else:
            full_ext_tx1 = full_ext_tx2 = full_ext_tx_sum = None

        # Apply the perturbation to each existing transformation
        logger.info(f'Perturbing each transform {number_perturbations_applied} times')
        for idx in range(number_of_transforms):
            logger.info(f'Perturbing transform {idx + 1}')
            # Rotate the unique rotation by the perturb_matrix_grid and set equal to the full_rotation* array
            full_rotation1 = np.matmul(original_rotation1[idx], rotation_perturbations1.swapaxes(-1, -2))  # rotation1
            full_inv_rotation1 = np.linalg.inv(full_rotation1)
            full_rotation2 = np.matmul(original_rotation2[idx], rotation_perturbations2.swapaxes(-1, -2))  # rotation2

            # Translate the unique translation according to the perturb_translation_grid
            if sym_entry.is_internal_tx1:
                full_int_tx1 = original_int_tx1[idx] + translation_perturbations1  # translation1
            if sym_entry.is_internal_tx2:
                full_int_tx2 = original_int_tx2[idx] + translation_perturbations2  # translation2
            if sym_entry.unit_cell:
                # perturbed_optimal_ext_dof_shifts = full_optimal_ext_dof_shifts[None] + ext_dof_perturbations
                # full_ext_tx_perturb1 = (perturbed_optimal_ext_dof_shifts[:, :, None] \
                #     * sym_entry.external_dof1).sum(axis=-2)
                # full_ext_tx_perturb2 = (perturbed_optimal_ext_dof_shifts[:, :, None] \
                #     * sym_entry.external_dof2).sum(axis=-2)
                # Below is for the individual perturbation
                # optimal_ext_dof_shift = full_optimal_ext_dof_shifts[idx]
                # perturbed_ext_dof_shift = optimal_ext_dof_shift + ext_dof_perturbations
                unsqueezed_perturbed_ext_dof_shifts = \
                    (original_optimal_ext_dof_shifts[idx] + ext_dof_perturbations)[:, :, None]
                # unsqueezed_perturbed_ext_dof_shifts = perturbed_ext_dof_shift[:, :, None]
                full_ext_tx1 = np.sum(unsqueezed_perturbed_ext_dof_shifts * external_dof1, axis=-2)
                full_ext_tx2 = np.sum(unsqueezed_perturbed_ext_dof_shifts * external_dof2, axis=-2)
                full_ext_tx_sum = full_ext_tx2 - full_ext_tx1

            # Check for ASU clashes again
            # Using the inverse transform of the model2 backbone and cb coordinates, check for clashes with the model1
            # backbone and cb coordinates BallTree
            ball_tree_kwargs = dict(binarytree=component1_backbone_cb_tree, clash_distance=clash_dist,
                                    rotation=full_rotation2, translation=full_int_tx2,
                                    rotation2=set_mat2, translation2=full_ext_tx_sum,
                                    rotation3=inv_setting1,
                                    translation3=None if full_int_tx1 is None else full_int_tx1 * -1,
                                    rotation4=full_inv_rotation1)
            # Create a fresh asu_clash_counts
            asu_clash_counts = np.ones(number_perturbations_applied)
            # clash_time_start = time.time()
            overlap_return = perturb_check_tree_for_query_overlap(
                **ball_tree_kwargs, return_containers={'overlap_counts': asu_clash_counts}, setup_args=(bb_cb_coords2,))
            # logger.debug(f'Perturb clash took {time.time() - clash_time_start:8f}s')

            # Extract the data
            asu_clash_counts = overlap_return['overlap_counts']
            logger.debug(f'Perturb expansion found asu_clash_counts:\n{asu_clash_counts}')
            passing_perturbations = np.flatnonzero(asu_clash_counts == 0)
            # Check for symmetric clashes again
            if not job.design.ignore_symmetric_clashes:
                passing_symmetric_clash_indices_perturb = find_viable_symmetric_indices(passing_perturbations.tolist())
            else:
                passing_symmetric_clash_indices_perturb = slice(None)
            # Index the passing ASU indices with the passing symmetric indices and keep all viable transforms
            # Stack the viable perturbed transforms
            stack_viable_transforms(passing_perturbations[passing_symmetric_clash_indices_perturb])

        # Concatenate the stacked perturbations
        full_rotation1 = np.concatenate(perturb_rotation1, axis=0)
        full_rotation2 = np.concatenate(perturb_rotation2, axis=0)
        number_of_transforms = len(full_rotation1)
        logger.info(f'After perturbation, found {number_of_transforms} viable solutions')
        if sym_entry.is_internal_tx1:
            full_int_tx1 = np.zeros((number_of_transforms, 3), dtype=float)
            # Add the translation to Z (axis=1)
            full_int_tx1[:, -1] = perturb_int_tx1
            # full_int_tx1 = stacked_internal_tx_vectors1

        if sym_entry.is_internal_tx2:
            full_int_tx2 = np.zeros((number_of_transforms, 3), dtype=float)
            # Add the translation to Z (axis=1)
            full_int_tx2[:, -1] = perturb_int_tx2
            # full_int_tx2 = stacked_internal_tx_vectors2

        if sym_entry.unit_cell:
            # optimal_ext_dof_shifts[:, :, None] <- None expands the axis to make multiplication accurate
            full_optimal_ext_dof_shifts = np.concatenate(perturb_optimal_ext_dof_shifts, axis=0)
            unsqueezed_optimal_ext_dof_shifts = full_optimal_ext_dof_shifts[:, :, None]
            full_ext_tx1 = np.sum(unsqueezed_optimal_ext_dof_shifts * external_dof1, axis=-2)
            full_ext_tx2 = np.sum(unsqueezed_optimal_ext_dof_shifts * external_dof2, axis=-2)

        transform_hashes = create_transformation_hash()
        logger.debug(f'Found the TransformHasher.translation_bin_width={model_transform_hasher.translation_bin_width}, '
                     f'.rotation_bin_width={model_transform_hasher.rotation_bin_width}\n'
                     f'Current range of sampled translations={sum(translation_perturb_steps)}, '
                     f'rotations={sum(rotation_steps)}')
        # print(model_transform_hasher.translation_bin_width > sum(translation_perturb_steps))
        # print(model_transform_hasher.rotation_bin_width > sum(rotation_steps))
        if model_transform_hasher.translation_bin_width > sum(translation_perturb_steps) or \
                model_transform_hasher.rotation_bin_width > sum(rotation_steps):
            # The translation/rotation is smaller than bins, so further exploration only possible without minimization
            # Get the shape of the passing perturbations
            perturbation_shape = [len(perturb) for perturb in perturb_rotation1]
            # sorted_unique_transform_hashes = transform_hashes
        else:
            # Minimize perturbation space by unique transform hashes
            # Using the current transforms, create a hash to uniquely label them and apply to the indices
            sorted_unique_transform_hashes, unique_indices = np.unique(transform_hashes, return_index=True)
            # Create array to mark which are unique
            unique_transform_hashes = np.zeros_like(transform_hashes)
            unique_transform_hashes[unique_indices] = 1
            # Filter by unique_indices, sorting the indices to maintain the order of the transforms
            # filter_transforms_by_indices(unique_indices)
            unique_indices.sort()
            filter_transforms_by_indices(unique_indices)
            transform_hashes = transform_hashes[unique_indices]
            # sorted_transform_hashes = np.sort(transform_hashes, axis=None)
            # unique_sorted_transform_hashes = np.zeros_like(sorted_transform_hashes, dtype=bool)
            # unique_sorted_transform_hashes[1:] = sorted_transform_hashes[1:] == sorted_transform_hashes[:-1]
            # unique_sorted_transform_hashes[0] = True
            # # Alternative
            # unique_transform_hashes = pd.Index(transform_hashes).duplicated('first')

            # total_number_of_perturbations = number_of_transforms * number_perturbations_applied
            # Get the shape of the passing perturbations
            perturbation_shape = []
            # num_zeros = 0
            last_perturb_start = 0
            for perturb in perturb_rotation1:
                perturb_end = last_perturb_start + len(perturb)
                perturbation_shape.append(unique_transform_hashes[last_perturb_start:perturb_end].sum())
                # Use if removing zero counts...
                # shape = unique_transform_hashes[last_perturb_start:perturb_end].sum()
                # if shape:
                #     perturbation_shape.append(shape)
                # else:
                #     num_zeros += 1
                last_perturb_start = perturb_end

            number_of_transforms = len(full_rotation1)
            logger.info(f'After culling duplicated transforms, found {number_of_transforms} viable solutions')
            num_zeros = perturbation_shape.count(0)
            if num_zeros:
                logger.info(f'A total of {num_zeros} original transformations had no unique perturbations')
                # Could use if removing zero counts... but probably less clear than above
                # pop_zero_index = perturbation_shape.index(0)
                # while pop_zero_index != -1:
                #     perturbation_shape.pop(pop_zero_index)
                #     pop_zero_index = perturbation_shape.index(0)

        return transform_hashes, perturbation_shape, n_perturbed_dof

    def optimize_found_transformations_by_metrics() -> tuple[pd.DataFrame, list[int]]:
        """Perform a cycle of (optional) transformation perturbation, and then score and select those which are ranked
        highest

        Returns:
            A tuple containing the DataFrame containing the selected metrics for selected Poses and the identifiers for
                those Poses
            # The mean value of the acquired metric for all found poses
        """
        nonlocal poses_df, residues_df
        nonlocal total_dof_perturbed
        # total_dof_perturbed = sym_entry.total_dof

        if any((sym_entry.number_dof_rotation, sym_entry.number_dof_translation)):
            nonlocal rotation_steps, translation_perturb_steps
            # Perform perturbations to the allowed degrees of freedom
            # Modify the perturbation amount by half as the space is searched to completion
            # Reduce rotation_step before as the original step size was already searched
            rotation_steps = tuple(step * .5 for step in rotation_steps)
            current_transformation_ids, number_of_perturbs_per_cluster, total_dof_perturbed = perturb_transformations()
            # Sets number_perturbations_applied, number_of_transforms,
            #  full_rotation1, full_rotation2, full_int_tx1, full_int_tx2,
            #  full_optimal_ext_dof_shifts, full_ext_tx1, full_ext_tx2
            # Reduce translation_perturb_steps after as the original step size was never searched
            translation_perturb_steps = tuple(step * .5 for step in translation_perturb_steps)
        # elif sym_entry.external_dof:  # The DOF are not such that perturbation would be of much benefit
        else:
            raise NotImplementedError(f"Can't perturb external dof only quite yet")

            # Perform optimization by means of optimal_tx
            def minimize_translations():
                """"""
                logger.info(f'Optimizing transformations')
                # The application of total_dof_perturbed might not be necessary as this optimizes fully
                total_dof_perturbed = sym_entry.total_dof
                # Remake the optimal shifts given each of the passing ghost fragment/surface fragment pairs
                optimal_ext_dof_shifts = np.zeros((number_of_transforms, 3), dtype=float)
                pose_residues = pose.residues
                for idx in range(number_of_transforms):
                    update_pose_coords(idx)
                    add_fragments_to_pose()
                    passing_ghost_coords = []
                    passing_surf_coords = []
                    reference_rmsds = []
                    for entity_pair, fragment_info in pose.fragment_info_by_entity_pair:
                        ghost_frag = pose_residues[fragment_info.paired]
                        surf_frag = pose_residues[fragment_info.mapped]
                        passing_ghost_coords.append(ghost_frag.guide_coords)
                        passing_surf_coords.append(surf_frag.guide_coords)
                        reference_rmsds.append(ghost_frag.rmsd)

                    transform_passing_shifts = \
                        optimal_tx.solve_optimal_shifts(passing_ghost_coords, passing_surf_coords, reference_rmsds)
                    mean_transform = transform_passing_shifts.mean(axis=0)

                    # Inherent in minimize_translations() call due to DOF requirements of preceding else:
                    if sym_entry.unit_cell:
                        # Must take the optimal_ext_dof_shifts and multiply the column number by the corresponding row
                        # in the sym_entry.external_dof#
                        # optimal_ext_dof_shifts[0] scalar * sym_entry.group_external_dof[0] (1 row, 3 columns)
                        # Repeat for additional DOFs, then add all up within each row.
                        # For a single DOF, multiplication won't matter as only one matrix element will be available
                        #
                        # # Must find positive indices before external_dof1 multiplication in case negatives there
                        # positive_indices = \
                        #     np.flatnonzero(np.all(transform_passing_shifts[:, :sym_entry.number_dof_external] >= 0, axis=1))
                        # number_passing_shifts = len(positive_indices)
                        optimal_ext_dof_shifts[idx, :sym_entry.number_dof_external] = \
                            mean_transform[:sym_entry.number_dof_external]

            # Using the current transforms, create a hash to uniquely label them and apply to the indices
            current_transformation_ids = create_transformation_hash()
            minimize_translations()

        # Todo
        #  enable precise metric acquisition
        #  dock_metrics = collect_dock_metrics(score_functions, proteinmpnn_score=job.dock.proteinmpnn_score)
        poses_df, residues_df = collect_dock_metrics(proteinmpnn_score=job.dock.proteinmpnn_score)
        weighted_trajectory_df: pd.DataFrame = prioritize_transforms_by_selection(poses_df)
        weighted_trajectory_df_index = weighted_trajectory_df.index

        if number_perturbations_applied > 1:
            # Sort each perturbation cluster members by the prioritized metric
            top_transform_cluster_indices: list[int] = []
            perturb_passing_indices: list[list[int]] = []

            # Used to progressively limit search as clusters deepen
            if optimize_round == 1:
                top_perturb_hits = total_dof_perturbed
                logger.info(f'Selecting the top {top_perturb_hits} transformations from each perturbation')
            else:
                top_perturb_hits = 1
                logger.info(f'Selecting the top transformation from each perturbation')
            # # Round down the sqrt of the number_perturbations_applied
            # top_perturb_hits = int(math.sqrt(number_perturbations_applied) + .5)
            # top_perturb_hits = int(total_dof_perturbed/optimize_round + .5)

            lower_perturb_idx = 0
            for cluster_idx, number_of_perturbs in enumerate(number_of_perturbs_per_cluster):
                if not number_of_perturbs:
                    # All perturbations were culled due to overlap
                    continue
                # Set up the cluster range
                upper_perturb_idx = lower_perturb_idx + number_of_perturbs
                perturb_indices = list(range(lower_perturb_idx, upper_perturb_idx))
                lower_perturb_idx = upper_perturb_idx
                # Grab the cluster range indices
                perturb_indexer = np.isin(weighted_trajectory_df_index, perturb_indices)
                if perturb_indexer.any():
                    if optimize_round == 1:
                        # Slice the cluster range indices by the top hits
                        selected_perturb_indices = \
                            weighted_trajectory_df_index[perturb_indexer][:top_perturb_hits].tolist()
                        # if selected_perturb_indices:
                        # Save the top transform and the top X transforms from each cluster
                        top_transform_cluster_indices.append(selected_perturb_indices[0])
                        perturb_passing_indices.append(selected_perturb_indices)
                    else:  # Just grab the top hit
                        top_transform_cluster_indices.append(weighted_trajectory_df_index[perturb_indexer][0])
                else:  # Update that no perturb_indices present after filter
                    number_of_perturbs_per_cluster[cluster_idx] = 0
                #     perturb_passing_indices.append([])

            if optimize_round == 1:
                nonlocal round1_cluster_shape
                round1_cluster_shape = [len(indices) for indices in perturb_passing_indices]
            elif optimize_round == 2:
                # This is only required if perturb_passing_indices.append([]) is used above
                # Adjust the shape to account for any perturbations that were culled due to overlap
                cluster_start = 0
                for cluster_idx, cluster_shape in enumerate(round1_cluster_shape):
                    cluster_end = cluster_start + cluster_shape
                    for number_of_perturbs in number_of_perturbs_per_cluster[cluster_start:cluster_end]:
                        if not number_of_perturbs:
                            # All perturbations were culled due to overlap
                            cluster_shape -= 1
                    # for indices in perturb_passing_indices[cluster_start:cluster_end]:
                    #     if not indices:
                    #         cluster_shape -= 1
                    # Set the cluster shape with the results of the perturbation trials
                    round1_cluster_shape[cluster_idx] = cluster_shape
                    cluster_start = cluster_end

                number_top_indices = len(top_transform_cluster_indices)  # sum(round1_cluster_shape)
                round1_number_of_clusters = len(round1_cluster_shape)
                logger.info(f'Reducing round 1 expanded cluster search from {number_top_indices} '
                            f'to {round1_number_of_clusters} transformations')
                top_scores_s = weighted_trajectory_df.loc[top_transform_cluster_indices,
                metrics.selection_weight_column]
                # Filter down to the size of the original transforms from the cluster expansion
                top_index_of_cluster = []
                cluster_lower_bound = 0
                for cluster_idx, cluster_shape in enumerate(round1_cluster_shape):
                    if cluster_shape > 0:
                        cluster_upper_bound = cluster_lower_bound + cluster_shape
                        top_cluster_score = top_scores_s.iloc[cluster_lower_bound:cluster_upper_bound].argmax()
                        top_index_of_cluster.append(cluster_lower_bound + top_cluster_score)
                        # Set new lower bound
                        cluster_lower_bound = cluster_upper_bound

                top_transform_cluster_indices = [top_transform_cluster_indices[idx] for idx in top_index_of_cluster]
        else:
            top_transform_cluster_indices = list(range(number_of_transforms))

        # # Finally take from each of the top perturbation "kernels"
        # # With each additional optimize_round, there is exponential increase in the number of transforms
        # # unless there is filtering to take the top
        # # Taking the sqrt (or equivalent function), needs to be incremented for each perturbation increase
        # # so this doesn't get out of hand as the amount grows
        # # For example, iteration 1 gets no sqrt, iteration 2 gets sqrt, 3 gets cube root
        # # root_to_take = 1/iteration
        # top_cluster_root_to_take = 1 / optimize_round
        # # Take the metric at each of the top positions and sort these
        # top_cluster_hits = int((number_of_transform_clusters**top_cluster_root_to_take) + .5)

        # Operation NOTE:
        # During the perturbation selection, this is the sqrt of the number_of_transform_clusters
        # So, from 18 transforms (idx=1), expanded to 81 dof perturbs (idx=2), to get 1458 possible,
        # 1392 didn't clash. 4 top_cluster_hits were selected and 9 transforms from each.
        # This is a lot of sampling for the other 14 that were never chosen. They might've
        # not been discovered without the perturb since the top score came from one of the 81
        # possible perturb transforms
        # if optimize_round > 1:
        #     cluster_divisor = (total_dof_perturbed / (optimize_round-1))
        # else:
        #     cluster_divisor = total_dof_perturbed
        # Divide the clusters by the total applied degrees of freedom
        # top_cluster_hits = int(number_of_transform_clusters/cluster_divisor + .5)
        #
        # # Grab the cluster range indices
        # cluster_representative_indexer = np.isin(weighted_trajectory_s.index, top_transform_cluster_indices)
        # selected_cluster_indices = \
        #     weighted_trajectory_s[cluster_representative_indexer][:top_cluster_hits].index.tolist()
        # # selected_cluster_hits = top_transform_cluster_indices[:top_cluster_overall_hits]
        # # # Use .loc here as we have a list used to index...
        # # selected_cluster_indices = weighted_trajectory_s.loc[selected_cluster_hits].index.tolist()

        # # Grab the top cluster indices in the order of the weighted_trajectory_df
        # cluster_representative_indexer = np.isin(weighted_trajectory_df_index, top_transform_cluster_indices)
        # selected_cluster_indices = weighted_trajectory_df_index[cluster_representative_indexer].tolist()
        # if number_perturbations_applied > 1 and optimize_round == 1:
        #     # For each of the top perturbation clusters, add all the indices picked from the above logic
        #     selected_indices = []
        #     for selected_idx in selected_cluster_indices:
        #         reference_idx = top_transform_cluster_indices.index(selected_idx)
        #         selected_indices.extend(perturb_passing_indices[reference_idx])
        # else:
        #     selected_indices = selected_cluster_indices

        # Grab the top cluster indices in the transformation order, not selected order
        if number_perturbations_applied > 1 and optimize_round == 1:
            # For each of the top perturbation clusters, add all the indices picked from the above logic
            selected_indices = []
            for cluster_idx, top_index in enumerate(top_transform_cluster_indices):
                selected_indices.extend(perturb_passing_indices[cluster_idx])
        else:
            selected_indices = top_transform_cluster_indices

        # Handle results
        # # Using the current transforms, create a hash to uniquely label them and apply to the indices
        # current_transformation_ids = create_transformation_hash()

        # Filter hits down in the order of the selected indices (i.e. transformation order)
        filter_transforms_by_indices(selected_indices)
        # Narrow down the metrics by the selected_indices. If this is the last cycle, they will be written
        poses_df = poses_df.loc[selected_indices]
        residues_df = residues_df.loc[selected_indices]
        # Reset the DataFrame.index given new ranking
        poses_df.index = residues_df.index = pd.RangeIndex(len(selected_indices))
        # Get the transformations that were selected ready to return
        # selected_transformation_ids = weighted_trajectory_df_index[selected_indices].tolist()
        selected_transformation_ids = [current_transformation_ids[idx] for idx in selected_indices]

        # Filter weighted_trajectory_df by selected_indices, and update the .index with ordered transformation_ids
        selected_indexer = np.isin(weighted_trajectory_df_index, selected_indices)
        weighted_trajectory_df.index = pd.Index(current_transformation_ids[weighted_trajectory_df_index])
        weighted_trajectory_df = weighted_trajectory_df[selected_indexer]
        # Todo?
        #  Was returning this version of weighted_trajectory_df, but was only using the selected_transformation_ids
        #  So, now just returning selected_indices
        # # Filter down the current_transformation_ids by the indices passing job.dock.filter and update the .index
        # weighted_current_transforms = current_transformation_ids[weighted_trajectory_df_index]
        # weighted_trajectory_df.index = pd.Index(weighted_current_transforms)
        # Todo use append_total_results() for global search? Was removed over memory considerations
        # # Add the weighted_trajectory_df to the total_results_df to keep global results
        # append_total_results(weighted_trajectory_df)

        return weighted_trajectory_df, selected_transformation_ids

    def create_transformation_hash() -> np.ndarray:
        """Using the currently available transformation parameters for the two Model instances, create the
        transformation hash to describe the orientation of the second model in relation to the first. This hash will be
        unique over the sampling space when discrete differences exceed the TransformHasher.rotation_bin_width and
        .translation_bin_width

        Returns:
            An integer hashing the currently active transforms to distinct orientational offset in the described space
        """
        # Needs to be completed outside of individual naming function as it is stacked
        # transforms = create_transformation_group()
        # input(f'len(transforms[0]["rotation"]): {len(transforms[0]["rotation"])}')
        guide_coordinates_model1, guide_coordinates_model2 = \
            cluster.apply_transform_groups_to_guide_coordinates(*create_transformation_group())
        # input(guide_coordinates_model1[:3])
        rotations = [None for _ in range(len(guide_coordinates_model1))]
        # input(len(rotations))
        translations = rotations.copy()
        # Only turn the outermost array into a list. Keep the guide coordinate 3x3 arrays as arrays for superposition3d
        for transform_idx, (guide_coord2, guide_coord1) in enumerate(
                zip(list(guide_coordinates_model2), list(guide_coordinates_model1))):
            # Reverse the orientation so that the rot, tx indicate the movement of guide_coord1 onto guide_coord2
            rmsd, rot, tx = superposition3d(guide_coord2, guide_coord1)
            rotations[transform_idx] = rot  # rotations.append(rot)
            translations[transform_idx] = tx  # translations.append(tx)

        # logger.debug(f'before rotations[:3]: {rotations[:3]}')
        # logger.debug(f'before translations[:3]: {translations[:3]}')
        hashed_transforms = model_transform_hasher.transforms_to_hash(rotations, np.array(translations))
        # rotations, translations = model_transform_hasher.hash_to_transforms(hashed_transforms)
        # logger.debug(f'after rotations[:3]: {rotations[:3]}')
        # logger.debug(f'after translations[:3]: {translations[:3]}')

        return hashed_transforms

    def prioritize_transforms_by_selection(df: pd.DataFrame) -> pd.DataFrame:
        """Using the active transformations, measure the Pose metrics and filter/weight according to defaults/provided
        parameters

        Args:
            df: The Pose DataFrame which should be prioritized from docking
        Returns:
            The DataFrame that has been sorted according to the specified filters/weights
        """
        weighted_df = metrics.prioritize_design_indices(
            df, filters=job.dock.filter, weights=job.dock.weight, default_weight=default_weight_metric)
        # Set the metrics_of_interest to the default weighting metric name as well as any weights that are specified
        metrics_of_interest = [metrics.selection_weight_column]
        if job.dock.weight:
            metrics_of_interest += list(job.dock.weight.keys())
        #     weighted_df = weighted_trajectory_df.loc[:, list(job.dock.weight.keys())]
        # else:
        #     weighted_df = weighted_trajectory_df.loc[:, metrics.selection_weight_column]
        weighted_df = weighted_df.loc[:, metrics_of_interest]
        # weighted_trajectory_s = metrics.pareto_optimize_trajectories(poses_df, weights=job.dock.weight,
        #                                                              default_sort=default_weight_metric)
        # weighted_trajectory_s is sorted with best transform in index 0, regardless of whether it is ascending or not
        return weighted_df

    # Todo use append_total_results() for global search
    # def append_total_results(additional_trajectory_df: pd.DataFrame) -> pd.DataFrame:
    #     """Combine existing metrics with the new metrics
    #     Args:
    #         additional_trajectory_df: The additional DataFrame to add to the existing global metrics
    #     Returns:
    #         The full global metrics DataFrame
    #     """
    #     nonlocal total_results_df
    #     # Add new metrics to existing and keep the newly added if there are overlap
    #     total_results_df = pd.concat([total_results_df, additional_trajectory_df], axis=0)
    #     total_results_df = total_results_df[~total_results_df.index.duplicated(keep='last')]
    #     return total_results_df

    # def calculate_results_for_stopping(target_df: pd.DataFrame, indices: list[int | str]) -> float | pd.Series:
    #     """Given a DataFrame with metrics from a round of optimization, calculate the optimization results to report on whether a stopping condition has been met
    #
    #     Args:
    #         target_df: The DataFrame that resulted from the most recent optimization
    #         indices: The indices which have been selected from the target_df
    #     Returns:
    #         The resulting values from the DataFrame based on the target metrics
    #     """
    #     # Find the value of the new metrics in relation to the old to calculate the result from optimization
    #     if job.dock.weight:
    #         selected_columns = list(job.dock.weight.keys())
    #     else:
    #         selected_columns = metrics.selection_weight_column
    #
    #     selected_metrics_df = target_df.loc[indices, selected_columns]
    #     # other_metrics_df = selected_metrics_df.drop(indices)
    #     # Find the difference between the selected and the other
    #     return selected_metrics_df.mean(axis=0)
    #     # other_metrics_df.mean(axis=1)

    # Initialize output DataFrames
    # Todo
    #  enable precise metric acquisition
    #  dock_metrics = collect_dock_metrics(score_functions, proteinmpnn_score=job.dock.proteinmpnn_score)
    poses_df, residues_df = collect_dock_metrics(proteinmpnn_score=job.dock.proteinmpnn_score)
    weighted_trajectory_df = prioritize_transforms_by_selection(poses_df)
    # # Get selected indices (sorted in original order)
    # selected_indices = weighted_trajectory_df.index.sort_values().tolist()
    # Get selected indices (sorted in weighted_trajectory_df order)
    selected_indices = weighted_trajectory_df.index.tolist()

    # Filter/sort transforms and metrics by the selected_indices
    filter_transforms_by_indices(selected_indices)
    poses_df = poses_df.loc[selected_indices]
    residues_df = residues_df.loc[selected_indices]
    # Get the hash of the current transforms
    passing_transform_ids = create_transformation_hash()
    weighted_trajectory_df.index = pd.Index(passing_transform_ids)

    # -----------------------------------------------------------------------------------------------------------------
    # Below creates perturbations to sampled transformations and iteratively optimizes scores the resulting Pose
    # -----------------------------------------------------------------------------------------------------------------
    # Set nonlocal perturbation/metric variables that are used in optimize_found_transformations_by_metrics()
    number_of_transforms = number_of_original_transforms = len(full_rotation1)
    number_perturbations_applied = 1
    if job.dock.perturb_dof:
        # Set the weighted_trajectory_df as total_results_df to keep a record of global results
        # total_results_df = poses_df <- this contains all filtered results too
        total_results_df = weighted_trajectory_df
        # Initialize docking score search
        round1_cluster_shape = []
        total_dof_perturbed = 1
        optimize_round = 0
        if job.dock.weight:
            selected_columns = list(job.dock.weight.keys())
        else:
            selected_columns = [metrics.selection_weight_column]
        result = total_results_df.loc[:, selected_columns].mean(axis=0)
        # result = calculate_results_for_stopping(total_results_df, passing_transform_ids)
        # threshold = 0.05  # 0.1 <- not convergent # 1 <- too lenient with pareto_optimize_trajectories
        threshold_percent = 0.05
        if isinstance(result, float):
            def result_func(result_): return result_
            thresholds = result * threshold_percent
            last_result = 0.
        else:  # pd.Series
            def result_func(result_): return result_.values
            result = result_func(result)
            thresholds = tuple(result * threshold_percent)
            last_result = tuple(0. for _ in thresholds)

        # The condition sum(translation_perturb_steps) < 0.1 is True after 4 optimization rounds...
        # To ensure that the abs doesn't produce worse values, need to compare results in an unbounded scale
        # (i.e. not between 0-1), which also indicates using a global scale. This way, iteration can tell if they are
        # better. It is a feature of perturb_transformations() that the same transformation is always included in grid
        # search at the moment, so the routine should never arrive at worse scores...
        # Everything below could really be expedited with a Bayseian optimization search strategy
        # while sum(translation_perturb_steps) > 0.1 and all(tuple(abs(last_result - result) > thresholds)):
        # Todo the tuple(abs(last_result - result) > thresholds)) with a float won't convert to an iterable
        logger.info(f'Starting {optimize_found_transformations_by_metrics.__name__} of {number_of_transforms} '
                    f'transformations with starting optimize target={result}')
        while (optimize_round < 2 or all(tuple(abs(last_result - result) > thresholds))) \
                and sum(translation_perturb_steps) > 0.1:  # model_transform_hasher.translation_bin_width:
            #     and sum(rotation_steps) > model_transform_hasher.rotation_bin_width:
            optimize_round += 1
            logger.info(f'{optimize_found_transformations_by_metrics.__name__} round {optimize_round}')
            last_result = result
            # Perform scoring and a possible iteration of dock perturbation
            weighted_trajectory_df, passing_transform_ids = optimize_found_transformations_by_metrics()
            # IMPORTANT:
            # - weighted_trajectory_df.index is in the order of the job.dock.weight/default_selection_weight
            # - passing_transform_ids are in the order of the current transformations
            # - De-duplication of overlapping passing_transform_ids (in case of TransformHasher resolution collapse) is
            #   handled after while loop
            top_results_df = weighted_trajectory_df.loc[:, selected_columns]
            # PREVIOUSLY, when weighted_trajectory_df contained all measurements passing filters from
            #  optimize_found_transformations_by_metrics()
            # - If the last optimize_found_transformations_by_metrics() sampled from a TransformHasher with no
            #   resolvable bins (highest resolution reached), all the weighted_trajectory_df.index have the same
            #   transformation id and loc/selection of them provides every match, not just passing_transform_ids
            #   prescribed by optimization
            #   - Mean value DOES NOT accurately reflect dataset, given the issue with selection of the same index...
            # top_results_df = weighted_trajectory_df.loc[passing_transform_ids, selected_columns]
            # Todo? Could also index the
            #  top_results_df = total_results_df.loc[passing_transform_ids, selected_columns]

            result = result_func(top_results_df.mean(axis=0))
            # result = calculate_results_for_stopping(total_results_df, passing_transform_ids)
            number_of_transforms = len(full_rotation1)
            logger.info(f'Found {number_of_transforms} transformations after '
                        f'{optimize_found_transformations_by_metrics.__name__} round {optimize_round} '
                        f'with result={result}. last_result={last_result}')
        else:
            if optimize_round == 1:
                number_top_indices = number_of_transforms
                round1_number_of_clusters = len(round1_cluster_shape)
                logger.info(f'Reducing round 1 expanded cluster search from {number_top_indices} '
                            f'to {round1_number_of_clusters} transformations')
                # Reduce the top_transform_cluster_indices to the best remaining in each optimize_round 1 cluster
                # Important that indexing happens by the passing_transform_ids order, as these are in the order of
                # the transformation search, while the weighted_trajectory_df is in the order of the job.dock.weight
                top_scores_s = weighted_trajectory_df.loc[passing_transform_ids, metrics.selection_weight_column]
                # Todo? Could also use
                #  top_scores_s = total_results_df.loc[passing_transform_ids, metrics.selection_weight_column].mean(
                #      axis=0)
                # top_indices_of_cluster = []
                # for i in range(round1_number_of_clusters):
                #     # Slice by the expanded cluster amount
                #     cluster_lower_bound = total_dof_perturbed * i
                #     top_cluster_score = top_scores_s.iloc[cluster_lower_bound:
                #                                           cluster_lower_bound + total_dof_perturbed].argmax()
                #     top_indices_of_cluster.append(cluster_lower_bound + top_cluster_score)

                # Filter down to the size of the original transforms from the cluster expansion
                top_indices_of_cluster = []
                cluster_lower_bound = 0
                for cluster_idx, cluster_shape in enumerate(round1_cluster_shape):
                    # This can't be less than 1 here...
                    # if cluster_shape > 0:
                    cluster_upper_bound = cluster_lower_bound + cluster_shape
                    top_cluster_score = top_scores_s.iloc[cluster_lower_bound:cluster_upper_bound].argmax()
                    top_indices_of_cluster.append(cluster_lower_bound + top_cluster_score)
                    # Set new lower bound
                    cluster_lower_bound = cluster_upper_bound

                passing_transform_ids = top_scores_s.iloc[top_indices_of_cluster].index.tolist()
                # Filter hits down
                filter_transforms_by_indices(top_indices_of_cluster)
                # Narrow down the metrics by the selected_indices. If this is the last cycle, they will be written
                poses_df = poses_df.loc[top_indices_of_cluster]
                residues_df = residues_df.loc[top_indices_of_cluster]
                # Reset the DataFrame.index
                poses_df.index = residues_df.index = pd.RangeIndex(len(top_indices_of_cluster))
                number_of_transforms = len(passing_transform_ids)

            # Grab the passing_transform_ids according to the order of provided job.dock.weight, which follows the
            # weighted_trajectory_df.index order, not transformations
            # This sorts the final optimized indices and transfers this order to the pose outputs
            # (current transform pool, poses_df, residues_df)
            weighted_transform_ids = weighted_trajectory_df.index.tolist()
            ordered_indices = [passing_transform_ids.index(_id) for _id in weighted_transform_ids]
            # This calculation was used when weighted_trajectory_df contains extra measurements that aren't
            # from passing_transform_ids. NOW all weighted_trajectory_df.index are passing_transform_ids
            # passing_transform_indexer = np.isin(weighted_trajectory_df.index, passing_transform_ids)
            # weighted_transform_ids = weighted_trajectory_df.index[passing_transform_indexer].tolist()
            # # Check if there are degenerate transformation_hashes due to loss of resolution with the transform hasher
            # if model_transform_hasher.translation_bin_width > sum(translation_perturb_steps) or \
            #         model_transform_hasher.rotation_bin_width > sum(rotation_steps):
            #     logger.info(f"Can't accurately describe each transformation due to resolution of the "
            #                 f"{model_transform_hasher.__class__.__name__}")
            #     # Take the "set" of them
            #     ordered_indices = utils.remove_duplicates(ordered_indices)
            # Reorder hits and metrics by the ordered_indices
            filter_transforms_by_indices(ordered_indices)
            poses_df = poses_df.loc[ordered_indices]
            residues_df = residues_df.loc[ordered_indices]

        logger.info(f'Optimization complete, with {number_of_transforms} final transformations')
    # Set the passing transformation identifiers as the trajectory metrics index
    # These should all be the same order as w/ or w/o optimize_found_transformations_by_metrics() the order of
    # passing_transform_ids is fetched from the order of the selected_indices and each _df is sorted accordingly
    passing_index = pd.Index([f'{identifier:d}' for identifier in passing_transform_ids],
                             name=sql.PoseMetrics.pose_id.name)
    starting_transforms = len(passing_index)
    # Deduplicate the indices by keeping the first instance
    # The above sorting ensures that the first instance is the "best"
    deduplicated_indices = ~passing_index.duplicated(keep='first')
    # Filter data structures
    passing_index = passing_index[deduplicated_indices]
    poses_df = poses_df[deduplicated_indices]
    residues_df = residues_df[deduplicated_indices]
    filter_transforms_by_indices(np.flatnonzero(deduplicated_indices))
    number_of_transforms = len(passing_index)
    if starting_transforms != number_of_transforms:
        logger.info(f'Removed {starting_transforms - number_of_transforms} due to transformation duplication')

    # Finally, tabulate the ProteinMPNN metrics if they weren't already and are requested
    if job.dock.proteinmpnn_score:
        pass  # ProteinMPNN metrics already collected
    elif job.use_proteinmpnn:  # Collect
        logger.info(f'Measuring quality of docked interfaces with ProteinMPNN unconditional probabilities')
        poses_df, residues_df = collect_dock_metrics(proteinmpnn_score=True)
    poses_df.index = residues_df.index = passing_index
    pose_names = poses_df.index.tolist()

    def terminate(poses_df: pd.DataFrame, residues_df: pd.DataFrame) -> list[PoseJob]:
        """Finalize any remaining work and return to the caller"""
        # Extract transformation parameters for output
        def populate_pose_metadata():
            """Add all required PoseJob information to output the created Pose instances for persistent storage"""
            # Save all pose transformation information
            # From here out, the transforms used should be only those of interest for outputting/sequence design
            # filter_transforms_by_indices() <- This is done above

            # Format pose transformations for output
            rotations1 = scipy.spatial.transform.Rotation.from_matrix(full_rotation1)
            rotations2 = scipy.spatial.transform.Rotation.from_matrix(full_rotation2)
            # Get all rotations in terms of the degree of rotation along the z-axis
            # Using the x, y rotation to enforce the degeneracy matrix...
            rotation_degrees_x1, rotation_degrees_y1, rotation_degrees_z1 = \
                zip(*rotations1.as_rotvec(degrees=True).tolist())
            rotation_degrees_x2, rotation_degrees_y2, rotation_degrees_z2 = \
                zip(*rotations2.as_rotvec(degrees=True).tolist())

            blank_parameter = list(repeat(None, number_of_transforms))
            if sym_entry.is_internal_tx1:
                nonlocal full_int_tx1
                if len(full_int_tx1) > 1:
                    full_int_tx1 = full_int_tx1.squeeze()
                z_heights1 = full_int_tx1[:, -1]
            else:
                z_heights1 = blank_parameter

            if sym_entry.is_internal_tx2:
                nonlocal full_int_tx2
                if len(full_int_tx2) > 1:
                    full_int_tx2 = full_int_tx2.squeeze()
                z_heights2 = full_int_tx2[:, -1]
            else:
                z_heights2 = blank_parameter

            set_mat1_number, set_mat2_number, *_extra = sym_entry.setting_matrices_numbers
            blank_parameters = list(repeat([None, None, None], number_of_transforms))
            # if sym_entry.unit_cell:
            #     full_uc_dimensions = full_uc_dimensions[passing_symmetric_clash_indices_perturb]
            #     full_ext_tx1 = full_ext_tx1[:]
            #     full_ext_tx2 = full_ext_tx2[:]
            #     full_ext_tx_sum = full_ext_tx2 - full_ext_tx1
            _full_ext_tx1 = blank_parameters if full_ext_tx1 is None else full_ext_tx1.squeeze()
            _full_ext_tx2 = blank_parameters if full_ext_tx2 is None else full_ext_tx2.squeeze()

            for idx, pose_job in enumerate(pose_jobs):
                # Update the sql.EntityData with transformations
                external_translation_x1, external_translation_y1, external_translation_z1 = _full_ext_tx1[idx]
                external_translation_x2, external_translation_y2, external_translation_z2 = _full_ext_tx2[idx]
                entity_transformations = [
                    dict(
                        rotation_x=rotation_degrees_x1[idx],
                        rotation_y=rotation_degrees_y1[idx],
                        rotation_z=rotation_degrees_z1[idx],
                        internal_translation_z=z_heights1[idx],
                        setting_matrix=set_mat1_number,
                        external_translation_x=external_translation_x1,
                        external_translation_y=external_translation_y1,
                        external_translation_z=external_translation_z1),
                    dict(
                        rotation_x=rotation_degrees_x2[idx],
                        rotation_y=rotation_degrees_y2[idx],
                        rotation_z=rotation_degrees_z2[idx],
                        internal_translation_z=z_heights2[idx],
                        setting_matrix=set_mat2_number,
                        external_translation_x=external_translation_x2,
                        external_translation_y=external_translation_y2,
                        external_translation_z=external_translation_z2)
                ]

                # Update sql.EntityData, sql.EntityMetrics, sql.EntityTransform
                # pose_id = pose_job.id
                # entity_data = []
                # Todo the number of entities and the number of transformations could be different
                entity_transforms = []
                for entity, transform in zip(pose.entities, entity_transformations):
                    transformation = sql.EntityTransform(**transform)
                    entity_transforms.append(transformation)
                    pose_job.entity_data.append(sql.EntityData(
                        meta=entity.metadata,
                        # metrics=entity.metrics,
                        transform=transformation)
                    )
                # print('pose_job.entity_data', pose_job.entity_data)
                # For whatever reason, this ^ print wouldn't print anything when above was written as:
                # entity_data.append(sql.EntityData(pose=pose_job,
                # And this warning occurred
                # /home/kylemeador/symdesign/symdesign/protocols/fragdock.py:4394:
                # SAWarning: Object of type <EntityData> not in session, add operation along 'EntityMetrics.entity'
                # won't proceed
                # It would print 4 objects, (2 of each EntityData) when this was written as:
                # pose_job.entity_data.append(sql.EntityData(pose=pose_job,

                session.add_all(entity_transforms)  # + entity_data)
                # # Need to generate the EntityData.id
                # session.flush()

        pose_jobs = [PoseJob.from_name(pose_name, project=project, protocol=protocol_name)
                     for pose_name in pose_names]

        # Format output data, fix existing entries
        # Populate the database with pose information. Has access to nonlocal session
        populate_pose_metadata()
        # Next, insert metadata information to database
        pose_jobs = insert_pose_jobs(session, pose_jobs, project)

        # For all new PoseJobs, insert them and their metrics into the database
        remaining_pose_idx_name_pairs = []
        for pose_job in pose_jobs:
            name = pose_job.name
            pose_name_index = pose_names.index(name)
            if pose_name_index != -1:
                remaining_pose_idx_name_pairs.append((pose_name_index, name))

        # Finally, sort all the names to ensure that the indices from the first pass are accurate
        # with the new set
        remaining_indices, remaining_pose_names = zip(
            *sorted(remaining_pose_idx_name_pairs, key=lambda name: name[0]))
        # Select poses_df/residues_df by remaining remaining_pose_names
        poses_df = poses_df.loc[remaining_pose_names, :]
        residues_df = residues_df.loc[remaining_pose_names, :]
        logger.debug(f'Reset the pose solutions with attributes:\n'
                     f'\tpose names={remaining_pose_names}\n'
                     f'\texisting transform indices={remaining_indices}\n')
        # number_of_transforms = len(remaining_pose_names)
        filter_transforms_by_indices(list(remaining_indices))

        # trajectory = TrajectoryMetadata(poses=pose_jobs, protocol=protocol)
        # session.add(trajectory)

        if job.db:
            pose_ids = [pose_job.id for pose_job in pose_jobs]
        else:
            pose_ids = remaining_pose_names

        if job.use_proteinmpnn:
            # Explicitly set false as scoring the wild-type sequence isn't desired now
            reset_use_proteinmpnn = True
            job.use_proteinmpnn = False
        else:
            reset_use_proteinmpnn = False

        for idx, pose_job in enumerate(pose_jobs):
            # Add the next set of coordinates
            update_pose_coords(idx)

            if job.output_fragments:
                add_fragments_to_pose()
            if job.output_trajectory:
                available_chain_ids = chain_id_generator()

                def _exhaust_n_chain_ids(n: int) -> str:
                    for _ in range(n - 1):
                        next(available_chain_ids)
                    return next(available_chain_ids)

                with open(os.path.join(project_dir, 'trajectory_oligomeric_models.pdb'), 'a') as f_traj:
                    # pose.write(file_handle=f_traj, assembly=True)
                    f_traj.write('{:9s}{:>4d}\n'.format('MODEL', idx + 1))
                    model_specific_chain_id = next(available_chain_ids)
                    for entity in pose.entities:
                        starting_chain_id = entity.chain_id
                        entity.chain_id = model_specific_chain_id
                        entity.write(file_handle=f_traj, assembly=True)
                        entity.chain_id = starting_chain_id
                        model_specific_chain_id = _exhaust_n_chain_ids(entity.number_of_symmetry_mates)
                    f_traj.write(f'ENDMDL\n')

            # Set the ASU, then write to a file
            pose.set_contacting_asu(distance=cb_distance)
            try:  # Remove existing cryst_record
                del pose._cryst_record
            except AttributeError:
                pass
            # pose.uc_dimensions
            # if sym_entry.unit_cell:  # 2, 3 dimensions
            #     cryst_record = generate_cryst1_record(full_uc_dimensions[idx], sym_entry.resulting_symmetry)
            # else:
            #     cryst_record = None
            pose_job.pose = pose
            pose_job.calculate_pose_design_metrics(session)
            putils.make_path(pose_job.pose_directory)
            pose_job.output_pose()
            pose_job.source_path = pose_job.pose_path
            pose_job.pose = None
            logger.info(f'OUTPUT POSE: {pose_job.pose_directory}')

            # Add metrics to the PoseJob then reset for next pose
            for entity, data in zip(pose.entities, pose_job.entity_data):
                data.metrics = entity.metrics
                entity.clear_metrics()

        # Output acquired metrics
        if job.db:
            # Update the poses_df and residues_df index to reflect the new pose_ids
            poses_df.index = pd.Index(pose_ids, name=sql.PoseMetrics.pose_id.name)
            # Write dataframes to the sql database
            sql.write_dataframe(session, poses=poses_df)
            output_residues = False
            if output_residues:  # Todo job.metrics.residues
                residues_df.index = pd.Index(pose_ids, name=sql.PoseResidueMetrics.pose_id.name)
                sql.write_dataframe(session, pose_residues=residues_df)
        else:  # Write to disk
            residues_df.sort_index(level=0, axis=1, inplace=True, sort_remaining=False)  # ascending=False
            putils.make_path(job.all_scores)
            residue_metrics_csv = os.path.join(job.all_scores, f'{building_blocks}_docked_poses_Residues.csv')
            residues_df.to_csv(residue_metrics_csv)
            logger.info(f'Wrote residue metrics to {residue_metrics_csv}')
            trajectory_metrics_csv = \
                os.path.join(job.all_scores, f'{building_blocks}_docked_poses_Trajectories.csv')
            job.dataframe = trajectory_metrics_csv
            poses_df = pd.concat([poses_df], keys=[('dock', 'pose')], axis=1)
            poses_df.columns = poses_df.columns.swaplevel(0, 1)
            poses_df.sort_index(level=2, axis=1, inplace=True, sort_remaining=False)
            poses_df.sort_index(level=1, axis=1, inplace=True, sort_remaining=False)
            poses_df.sort_index(level=0, axis=1, inplace=True, sort_remaining=False)
            poses_df.to_csv(trajectory_metrics_csv)
            logger.info(f'Wrote trajectory metrics to {trajectory_metrics_csv}')

        # After pose output loop
        # Explicitly set false as scoring the wildtype sequence isn't desired now
        if reset_use_proteinmpnn:
            job.use_proteinmpnn = True

        # # Todo 2 modernize with the new SQL database and 6D transform aspirations
        # # Cluster by perturbation if perturb_dof:
        # if number_perturbations_applied > 1:
        #     perturbation_identifier = '-p_'
        #     cluster_type_str = 'ByPerturbation'
        #     seed_transforms = utils.remove_duplicates(
        #         [pose_name.split(perturbation_identifier)[0] for pose_name in remaining_pose_names])
        #     cluster_map = {seed_transform: remaining_pose_names[idx * number_perturbations_applied:
        #                                               (idx + 1) * number_perturbations_applied]
        #                    for idx, seed_transform in enumerate(seed_transforms)}
        #     # for pose_name in remaining_pose_names:
        #     #     seed_transform, *perturbation = pose_name.split(perturbation_identifier)
        #     #     clustered_transformations[seed_transform].append(pose_name)
        #
        #     # Set the number of poses to cluster equal to the sqrt of the search area
        #     job.cluster.number = math.sqrt(number_perturbations_applied)
        # else:
        #     cluster_type_str = 'ByTransformation'
        #     cluster_map = cluster.cluster_by_transformations(*create_transformation_group(),
        #                                                      values=project_pose_names)
        # # Output clustering results
        # job.cluster.map = utils.pickle_object(cluster_map,
        #                                       name=putils.default_clustered_pose_file.format('', cluster_type_str),
        #                                       out_path=project_dir)
        # logger.info(f'Found {len(cluster_map)} unique clusters from {len(remaining_pose_names)} pose inputs. '
        #             f'Wrote cluster map to {job.cluster.map}')

        return pose_jobs

    # Clean up, save data/output results
    with job.db.session(expire_on_commit=False) as session:
        pose_jobs = terminate(poses_df, residues_df)
        session.commit()
        metrics_stmt = select(PoseJob).where(PoseJob.id.in_([pose_job.id for pose_job in pose_jobs])) \
            .execution_options(populate_existing=True) \
            .options(selectinload(PoseJob.metrics))
        pose_jobs = session.scalars(metrics_stmt).all()

    logger.info(f'Total {building_blocks} dock trajectory took {time.time() - frag_dock_time_start:.2f}s')

    return pose_jobs