ml
proteinmpnn_factory
module-attribute
proteinmpnn_factory: Annotated[ProteinMPNNFactory, 'Calling this factory method returns the single instance of the ProteinMPNN class located at the "source" keyword argument'] = ProteinMPNNFactory()
Calling this factory method returns the single instance of the Database class located at the "source" keyword argument
ProteinMPNNFactory
ProteinMPNNFactory(**kwargs)
Return a ProteinMPNN instance by calling the Factory instance with the ProteinMPNN model name
Handles creation and allotment to other processes by saving expensive memory load of multiple instances and allocating a shared pointer to the named ProteinMPNN model
Source code in symdesign/resources/ml.py
360 361 |
|
__call__
__call__(model_name: str = 'v_48_020', backbone_noise: float = 0.0, ca_only: bool = False, **kwargs) -> ProteinMPNN
Return the specified ProteinMPNN object singleton
Parameters:
-
model_name
(str
, default:'v_48_020'
) –The name of the model to use from ProteinMPNN taking the format v_X_Y, where X is neighbor distance and Y is noise
-
backbone_noise
(float
, default:0.0
) –The amount of backbone noise to add to the pose during design
-
ca_only
(bool
, default:False
) –Whether a minimal CA variant of the protein should be used for design calculations
Returns: The instance of the initialized ProteinMPNN model
Source code in symdesign/resources/ml.py
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
|
get
get(**kwargs) -> ProteinMPNN
Return the specified ProteinMPNN object singleton
Returns:
-
ProteinMPNN
–The instance of the initialized ProteinMPNN model
Source code in symdesign/resources/ml.py
450 451 452 453 454 455 456 457 458 459 460 461 |
|
RunModel
RunModel(config: ConfigDict, params: Optional[Mapping[str, Mapping[str, ndarray]]] = None, device: Device = None)
Bases: RunModel
Container for JAX model.
params:
device: The device the model should be compiled on
Source code in symdesign/resources/ml.py
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 |
|
predict
predict(feat: FeatureDict, random_seed: int) -> Mapping[str, Any]
Makes a prediction by inferencing the model on the provided features.
Parameters:
-
feat
(FeatureDict
) –A dictionary of NumPy feature arrays as output by RunModel.process_features.
-
random_seed
(int
) –The random seed to use when running the model. In the multimer model this controls the MSA sampling.
Returns:
-
Mapping[str, Any]
–A dictionary of model outputs.
Source code in symdesign/resources/ml.py
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 |
|
set_params
set_params(model_params: dict[str, Mapping[str, Mapping[str, ndarray]]])
Set a collection of parameters that a single compiled model should run
Parameters:
-
model_params
(dict[str, Mapping[str, Mapping[str, ndarray]]]
) –A dictionary of model parameters
Returns: None
Source code in symdesign/resources/ml.py
1192 1193 1194 1195 1196 1197 1198 1199 1200 |
|
predict_with_params
predict_with_params(parameter_type: str, feat: FeatureDict, random_seed: int) -> Mapping[str, Any]
Makes a prediction by inferencing the model on the provided features.
Parameters:
-
parameter_type
(str
) –The name of the parameter set to fetch
-
feat
(FeatureDict
) –A dictionary of NumPy feature arrays as output by RunModel.process_features.
-
random_seed
(int
) –The random seed to use when running the model. In the multimer model this controls the MSA sampling.
Returns:
-
Mapping[str, Any]
–A dictionary of model outputs.
Source code in symdesign/resources/ml.py
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 |
|
get_device_memory
get_device_memory(device: device | int | str | None, free: bool = False) -> int
Get the memory available for a requested device to calculate computational constraints
Parameters:
-
device
(device | int | str | None
) –The current device of the pytorch model in question
-
free
(bool
, default:False
) –Whether to return the free memory if the device is a cuda GPU, otherwise return all pytorch memory
Returns: The bytes of memory available
Source code in symdesign/resources/ml.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
calculate_proteinmpnn_batch_length
calculate_proteinmpnn_batch_length(model: ProteinMPNN, number_of_residues: int, element_memory: int = 4) -> int
Parameters:
-
model
(ProteinMPNN
) –The ProteinMPNN model
-
number_of_residues
(int
) –The number of residues used in the ProteinMPNN model
-
element_memory
(int
, default:4
) –Where each element is np.int64, np.float32, etc.
Returns: The size of the batch that can be completed for the ProteinMPNN model given it's device
Source code in symdesign/resources/ml.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
|
batch_calculation
batch_calculation(size: int, batch_length: int, setup: Callable = None, compute_failure_exceptions: tuple[Type[Exception], ...] = (Exception)) -> Callable
Use as a decorator to execute a function in batches over an input that is too large for available computational resources, typically memory
Produces the variables actual_batch_length and batch_slice that can be used inside the decorated function
Parameters:
-
size
(int
) –The total number of units of work to be done
-
batch_length
(int
) –The starting length of a batch. This should be chosen empirically
-
setup
(Callable
, default:None
) –A Callable which should be called before the batches are executed to produce data that is passed to the function. The first argument of this Callable should be batch_length
-
compute_failure_exceptions
(tuple[Type[Exception], ...]
, default:(Exception)
) –A tuple of possible exceptions which upon raising should be allowed to restart
Decorated Callable Args: args: The arguments to pass to the function kwargs: Keyword Arguments to pass to the decorated Callable setup_args: Arguments to pass to the setup Callable setup_kwargs: Keyword Arguments to pass to the setup Callable return_containers: dict - The key and SupportsIndex value to store decorated Callable returns inside Returns: The populated function_return_containers
Source code in symdesign/resources/ml.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
create_decoding_order
create_decoding_order(randn: Tensor, chain_mask: Tensor, tied_pos: Iterable[Container] = None, to_device: str = None, **kwargs) -> Tensor
Parameters:
-
randn
(Tensor
) – -
chain_mask
(Tensor
) – -
tied_pos
(Iterable[Container]
, default:None
) – -
to_device
(str
, default:None
) –
Returns:
Source code in symdesign/resources/ml.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
|
batch_proteinmpnn_input
batch_proteinmpnn_input(size: int = None, **kwargs) -> dict[str, ndarray]
Set up all data for batches of proteinmpnn design
Parameters:
-
size
(int
, default:None
) –The number of inputs to use. If left blank, the size will be inferred from axis=0 of the X array
Other Parameters:
-
X
–numpy.ndarray = None - The array specifying the parameter X
-
X_unbound
–numpy.ndarray = None - The array specifying the parameter X_unbound
-
S
–numpy.ndarray = None - The array specifying the parameter S
-
randn
–numpy.ndarray = None - The array specifying the parameter randn
-
chain_mask
–numpy.ndarray = None - The array specifying the parameter chain_mask
-
chain_encoding
–numpy.ndarray = None - The array specifying the parameter chain_encoding
-
residue_idx
–numpy.ndarray = None - The array specifying the parameter residue_idx
-
mask
–numpy.ndarray = None - The array specifying the parameter mask
-
chain_M_pos
–numpy.ndarray = None - The array specifying the parameter chain_M_pos (residue_mask)
-
omit_AA_mask
–numpy.ndarray = None - The array specifying the parameter omit_AA_mask
-
pssm_coef
–numpy.ndarray = None - The array specifying the parameter pssm_coef
-
pssm_bias
–numpy.ndarray = None - The array specifying the parameter pssm_bias
-
pssm_log_odds_mask
–numpy.ndarray = None - The array specifying the parameter pssm_log_odds_mask
-
bias_by_res
–numpy.ndarray = None - The array specifying the parameter bias_by_res
-
tied_beta
–numpy.ndarray = None - The array specifying the parameter tied_beta
Returns:
-
dict[str, ndarray]
–A dictionary with each of the ProteinMPNN parameters formatted in a batch
Source code in symdesign/resources/ml.py
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
|
proteinmpnn_to_device
proteinmpnn_to_device(device: str = None, **kwargs) -> dict[str, Tensor]
Set up all data to torch.Tensors for ProteinMPNN design
Parameters:
-
device
(str
, default:None
) –The device to load tensors to
Other Parameters:
-
X
–numpy.ndarray = None - The array specifying the parameter X
-
X_unbound
–numpy.ndarray = None - The array specifying the parameter X_unbound
-
S
–numpy.ndarray = None - The array specifying the parameter S
-
randn
–numpy.ndarray = None - The array specifying the parameter randn
-
chain_mask
–numpy.ndarray = None - The array specifying the parameter chain_mask
-
chain_encoding
–numpy.ndarray = None - The array specifying the parameter chain_encoding
-
residue_idx
–numpy.ndarray = None - The array specifying the parameter residue_idx
-
mask
–numpy.ndarray = None - The array specifying the parameter mask
-
chain_M_pos
–numpy.ndarray = None - The array specifying the parameter chain_M_pos (residue_mask)
-
omit_AA_mask
–numpy.ndarray = None - The array specifying the parameter omit_AA_mask
-
pssm_coef
–numpy.ndarray = None - The array specifying the parameter pssm_coef
-
pssm_bias
–numpy.ndarray = None - The array specifying the parameter pssm_bias
-
pssm_log_odds_mask
–numpy.ndarray = None - The array specifying the parameter pssm_log_odds_mask
-
bias_by_res
–numpy.ndarray = None - The array specifying the parameter bias_by_res
-
tied_beta
–numpy.ndarray = None - The array specifying the parameter tied_beta
Returns:
-
dict[str, Tensor]
–The torch.Tensor ProteinMPNN parameters
Source code in symdesign/resources/ml.py
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
|
setup_pose_batch_for_proteinmpnn
setup_pose_batch_for_proteinmpnn(batch_length: int, device, **parameters) -> dict[str, ndarray | Tensor]
Parameters:
-
batch_length
(int
) –The length the batch to set up
-
device
–The device used for batch calculations
Returns: A mapping of necessary containers for ProteinMPNN inference in batches and loaded to the device
Source code in symdesign/resources/ml.py
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
|
proteinmpnn_batch_design
proteinmpnn_batch_design(batch_slice: slice, proteinmpnn: ProteinMPNN, X: Tensor = None, randn: Tensor = None, S: Tensor = None, chain_mask: Tensor = None, chain_encoding: Tensor = None, residue_idx: Tensor = None, mask: Tensor = None, temperatures: Sequence[float] = (0.1), pose_length: int = None, bias_by_res: Tensor = None, tied_pos: Iterable[Container] = None, X_unbound: Tensor = None, **batch_parameters) -> dict[str, ndarray]
Perform ProteinMPNN design tasks on input that is split into batches
Parameters:
-
batch_slice
(slice
) – -
proteinmpnn
(ProteinMPNN
) – -
X
(Tensor
, default:None
) – -
randn
(Tensor
, default:None
) – -
S
(Tensor
, default:None
) – -
chain_mask
(Tensor
, default:None
) – -
chain_encoding
(Tensor
, default:None
) – -
residue_idx
(Tensor
, default:None
) – -
mask
(Tensor
, default:None
) – -
temperatures
(Sequence[float]
, default:(0.1)
) – -
pose_length
(int
, default:None
) – -
bias_by_res
(Tensor
, default:None
) – -
tied_pos
(Iterable[Container]
, default:None
) – -
X_unbound
(Tensor
, default:None
) –
Returns: A mapping of the key describing to the corresponding value, i.e. sequences, complex_sequence_loss, and unbound_sequence_loss
Source code in symdesign/resources/ml.py
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
|
proteinmpnn_batch_score
proteinmpnn_batch_score(batch_slice: slice, proteinmpnn: ProteinMPNN, X: Tensor = None, S: Tensor = None, chain_mask: Tensor = None, chain_encoding: Tensor = None, residue_idx: Tensor = None, mask: Tensor = None, pose_length: int = None, X_unbound: Tensor = None, chain_M_pos: Tensor = None, residue_mask: Tensor = None, randn: Tensor = None, decoding_order: Tensor = None, **batch_parameters) -> dict[str, ndarray]
Perform ProteinMPNN design tasks on input that is split into batches
Parameters:
-
batch_slice
(slice
) – -
proteinmpnn
(ProteinMPNN
) – -
X
(Tensor
, default:None
) – -
S
(Tensor
, default:None
) – -
chain_mask
(Tensor
, default:None
) – -
chain_encoding
(Tensor
, default:None
) – -
residue_idx
(Tensor
, default:None
) – -
mask
(Tensor
, default:None
) – -
pose_length
(int
, default:None
) – -
X_unbound
(Tensor
, default:None
) – -
chain_M_pos
(Tensor
, default:None
) – -
residue_mask
(Tensor
, default:None
) – -
randn
(Tensor
, default:None
) – -
decoding_order
(Tensor
, default:None
) –
Returns: A mapping of the key describing to the corresponding value, i.e. sequences, complex_sequence_loss, and unbound_sequence_loss
Source code in symdesign/resources/ml.py
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 |
|
sequence_nllloss
sequence_nllloss(sequence: Tensor, log_probs: Tensor, mask: Tensor = None, per_residue: bool = True) -> Tensor
Score designed sequences using the Negative log likelihood loss function
Parameters:
-
sequence
(Tensor
) –The sequence tensor
-
log_probs
(Tensor
) –The logarithmic probabilities at each residue for every amino acid. This may be found by an evolutionary profile or a forward pass through ProteinMPNN
-
mask
(Tensor
, default:None
) –Any positions that are masked in the design task
-
per_residue
(bool
, default:True
) –Whether to return scores per residue
Returns: The loss calculated over the log probabilities compared to the sequence tensor. If per_residue=True, the returned Tensor is the same shape as sequence (i.e. (batch, length)), otherwise, it is just the length of sequence as calculated by the average loss over every residue
Source code in symdesign/resources/ml.py
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 |
|
jnp_to_np
jnp_to_np(jax_dict: dict[str, Any]) -> dict[str, Any]
Recursively changes jax arrays to numpy arrays
Parameters:
-
jax_dict
(dict[str, Any]
) –A dictionary with the keys mapped to jax.numpy.array types
Returns: The input dictionary modified with the keys mapped to np.array type
Source code in symdesign/resources/ml.py
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 |
|
calculate_alphafold_batch_length
calculate_alphafold_batch_length(device: Device, number_of_residues: int, element_memory: int = 4) -> int
Parameters:
-
device
(Device
) –The ProteinMPNN model
-
number_of_residues
(int
) –The number of residues used in the ProteinMPNN model
-
element_memory
(int
, default:4
) –Where each element is np.int64, np.float32, etc.
Returns: The size of the batch that can be completed for the ProteinMPNN model given it's device
Source code in symdesign/resources/ml.py
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 |
|
get_jax_device_memory
get_jax_device_memory(device_int: int) -> int
Based on the device number, use torch to get the device memory
Source code in symdesign/resources/ml.py
1310 1311 1312 |
|
alphafold_required_memory
alphafold_required_memory(number_of_residues: int)
Get the bytes required for the number of residues in the model
Parameters:
-
number_of_residues
(int
) –The number of residues in the model
Source code in symdesign/resources/ml.py
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 |
|
get_alphafold_model_device
get_alphafold_model_device(number_of_residues: int) -> Device
Get the GPU capable of performing the AlphaFold inference for the number of residues in the model
Parameters:
-
number_of_residues
(int
) –The number of residues in the model
Returns: The jax.Device to use with the number of residues present in the model
Source code in symdesign/resources/ml.py
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 |
|
set_up_model_runners
set_up_model_runners(model_type: af_model_literal = 'monomer', number_of_residues: int = 1000, num_predictions_per_model: int = 1, num_ensemble: int = 1, development: bool = False) -> dict[str, RunModel]
Produce Alphafold RunModel class loaded with their training parameters
Parameters:
-
model_type
(af_model_literal
, default:'monomer'
) –The type of model to load. Should be one of the viable Alphafold models including: 'monomer', 'monomer_casp14', 'monomer_ptm', 'multimer'
-
number_of_residues
(int
, default:1000
) –The number of residues in the model. Used only to calculate approximate memory needs during device allocation
-
num_predictions_per_model
(int
, default:1
) –The number of predictions to make for each Alphafold model. Essentially duplicates the original models 'num_predictions_per_model' times
-
num_ensemble
(int
, default:1
) –The number of model ensembles to make. Typically, 1 is sufficient, but during CASP14, 8 were used
-
development
(bool
, default:False
) –Whether a smaller subset of models should be used for increased testing performance
Returns: A dictionary of the model name to the RunModel instance for each 'model_type'/'num_predictions_per_model' requested
Source code in symdesign/resources/ml.py
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 |
|
af_predict
af_predict(features: FeatureDict, model_runners: dict[str, RunModel], gpu_relax: bool = False, models_to_relax: relax_options_literal = None, random_seed: int = None, confidence_stop_threshold: float = 0.85) -> tuple[dict[str, dict[str, str]], dict[str, FeatureDict]]
Run Alphafold to predict a structure from sequence/msa/template features
Parameters:
-
#
(length
) –The length of the desired output for prediction metrics
-
features
(FeatureDict
) –The sequence/msa/template feature parameters to populate the jax model
-
model_runners
(dict[str, RunModel]
) –The RunModel instances which should predict the structure
-
gpu_relax
(bool
, default:False
) –Whether predictions should be relaxed using a GPU (if one is available)
-
models_to_relax
(relax_options_literal
, default:None
) –Specify which predictions should be relaxed
-
random_seed
(int
, default:None
) –A random integer to seed the model. Could be provided to ensure consistency across runs
-
confidence_stop_threshold
(float
, default:0.85
) –The confidence threshold to stop prediction if a prediction scores higher than it. Value provided should be between [0-1]. Will use mean plddt if the model is monomer, if model is multimer, will use 0.8interface_predicted_template_modeling_score + 0.2predicted_template_modeling_score
Returns: The tuple of structure and score dictionaries. Where structures contains the keys 'relaxed' and 'unrelaxed' mapped to the model name and the model PDB string and folding_scores contain the model name mapped to each of the score types 'predicted_aligned_error' (length, length), 'plddt' (length), 'predicted_template_modeling_score' (1), and 'predicted_interface_template_modeling_score' (1)
Source code in symdesign/resources/ml.py
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 |
|